精英家教网 > 高中数学 > 题目详情
(x2-1)(
1
x
-2)5的展开式的常数项是(  )
A、48B、-48
C、112D、-112
考点:二项式系数的性质
专题:计算题,二项式定理
分析:第一个因式取x2,第二个因式取
1
x2
;第一个因式取-1,第二个因式取(-2)5,即可得出结论.
解答: 解:第一个因式取x2,第二个因式取
1
x2
,可得
C
3
5
•(-2)3
=-80;
第一个因式取-1,第二个因式取(-2)5,可得(-1)×(-2)5=32
∴(x2-1)(
1
x
-2)5的展开式的常数项是-80+32=-48.
故选:B.
点评:本题考查二项式定理的运用,解题的关键是确定展开式的常数项得到的途径.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列有四种说法
①若复数z满足方程z2+2=0,则z3=-2
2
i;
②线性回归方程对应的直线y=bx+a一定经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③若(1-2x)2012=a0+a1x+…a2012x2012(x∈R),则
a1
2
+
a2
22
+…+
a2012
22012
=-1;
④用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1).
其中正确的是(  )
A、①②B、③C、③④D、④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若cosA=
1
3
,AB:AC=3:2,则sinB的值为(  )
A、
2
3
B、
7
9
C、
2
2
3
D、
4
2
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y=0对称,则圆C2的方程为(  )
A、(x-1)2+(y+1)2=1
B、(x-1)2+(y-1)2=1
C、(x+1)2+(y+1)2=1
D、(x+1)2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式mx2+mnx+n>0的解集为{x|1<x<2},则m+n的值为(  )
A、
3
2
B、
9
2
C、-
3
2
D、-
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=
3
,BC=1,sinC=
3
cosC,则△ABC的面积为(  )
A、
7
5
B、
11
4
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设z=1-i(i是虚数单位),则复数
3
z
+i2
的实部是(  )
A、
3
2
B、
3
2
2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asin(ωx)(A>0,ω>0),x∈[0,4]的图象,且图象的最高点为S(3,2
3
),赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P两点间的距离;
(2)设∠PMN=θ,试用θ表示赛道MNP的长;            
(3)当θ为何值时,折线段赛道MNP最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],
则把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=x2,x∈[0,+∞)符合条件②的区间[a,b];
(2)是否存在函数f(x)=kx+b(k≠0)在R内为闭函数,且[1,2]为满足条件②的区间?若存在,求出f(x),若不存在,请说明理由.

查看答案和解析>>

同步练习册答案