精英家教网 > 高中数学 > 题目详情
1.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,2AC=AA1,D,M分别是棱AA1,BC的中点.证明:
(1)AM∥平面BDC1
(2)DC1⊥平面BDC.

分析 (1)取BC1的中点N,连接DN,MN,证明DN∥AM,即可证明AM∥平面BDC1
(2)证明DC1⊥BC,且DC1⊥DC,即可证明DC1⊥平面BDC.

解答 证明:(1)如图所示,
取BC1的中点N,连接DN,MN.
则MN∥CC1,且MN=$\frac{1}{2}$CC1
又AD∥CC1,且AD=$\frac{1}{2}$CC1
∴AD∥MN,且AD=MN;
∴四边形ADNM为平行四边形,
∴DN∥AM;
又DN?平面BDC1,AM?平面BDC1
∴AM∥平面BDC1…(6分)
(2)由已知BC⊥CC1,BC⊥AC,
又CC1∩AC=C,
∴BC⊥平面ACC1A1
又DC1?平面ACC1A1
∴DC1⊥BC;
由已知得∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,
∴DC1⊥DC;
又DC∩BC=C,
∴DC1⊥平面BDC.…(12分)

点评 本题考查了空间中的平行与垂直的应用问题,也考查了空间想象能力与逻辑思维能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=|x+1|+|x-5|.
(Ⅰ)解关于x的不等式f(x)≥10;
(Ⅱ)若f(x)≥$\frac{4}{t}$+2对任意的实数x恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在直角坐标系xOy中,以原点为极点,x轴的非负半轴为极轴,且取相同的单位长度建立极坐标系,若点P的极坐标为(2,$\frac{π}{3}$),则它的直角坐标为(  )
A.$(\sqrt{3},1)$B.(1,$\sqrt{3}$)C.(-1,$\sqrt{3}$)D.(1,-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在正方体ABCD-A1B1C1D1中,E、F分别为AD1,CD1中点.
(1)求异面直线EF与CD所成角的大小;
(2)求证:EF⊥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“对任意x>1,x2>1”的否定是存在x>1,x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,且Q为AD的中点.PA=PD=AD=2.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)点M在线段PC上,PM=$\frac{1}{3}$PC,若平面PAD⊥平面ABCD,求三棱锥M-PQB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知角α的终边过点P(sin$\frac{3π}{4}$,cos$\frac{3π}{4}$),且α∈[0,2π),则α=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b、c分别是△ABC的三个内角A、B、C的对边.
(1)若△ABC面积${S_{△ABC}}=\frac{{\sqrt{3}}}{2},c=2,A=60°$,求a、b的值;
(2)若a=ccosB,且b=csinA,试判断△ABC的形状.
(3)当钝角△ABC的三边a,b,c是三个连续整数时,求△ABC外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a,b是不共线的两个向量,已知$\overrightarrow{AB}$=2a+kb,$\overrightarrow{BC}$=a+b,$\overrightarrow{CD}$=a-2b,若A、B、D三点共线,则k的值为-1.

查看答案和解析>>

同步练习册答案