精英家教网 > 高中数学 > 题目详情
11.设a,b是不共线的两个向量,已知$\overrightarrow{AB}$=2a+kb,$\overrightarrow{BC}$=a+b,$\overrightarrow{CD}$=a-2b,若A、B、D三点共线,则k的值为-1.

分析 由题意可得向量$\overrightarrow{AB}$和$\overrightarrow{BD}$共线,存在实数λ,使$\overrightarrow{AB}=λ\overrightarrow{BD}$,即2$\overrightarrow{a}$+k$\overrightarrow{b}$=$2λ\overrightarrow{a}-λ\overrightarrow{b}$,可得关于k,λ的方程组,进行求解即可.

解答 解:∵A,B,D三点共线,
∴向量$\overrightarrow{AB}$和$\overrightarrow{BD}$共线,故存在实数λ,使$\overrightarrow{AB}=λ\overrightarrow{BD}$,
由题意可得$\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=($\overrightarrow{a}$+$\overrightarrow{b}$)+($\overrightarrow{a}$-2$\overrightarrow{b}$)=$2\overrightarrow{a}-\overrightarrow{b}$,
即2$\overrightarrow{a}$+k$\overrightarrow{b}$=λ($2\overrightarrow{a}-\overrightarrow{b}$)=$2λ\overrightarrow{a}-λ\overrightarrow{b}$,
故可得$\left\{\begin{array}{l}{2=2λ}\\{k=-λ}\end{array}\right.$,解得$\left\{\begin{array}{l}{λ=1}\\{k=-1}\end{array}\right.$,
故k=-1,
故答案为:-1

点评 本题考查向量的线性运算,涉及向量的共线定理,建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,2AC=AA1,D,M分别是棱AA1,BC的中点.证明:
(1)AM∥平面BDC1
(2)DC1⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex-x+3,{an}是公差为1且各项均为正数的等差数列.若f(a1)+f(a2)+f(a3)=$\frac{{{e^5}-{e^2}}}{e-1}$.其中e是自然对数的底数,则$\frac{{f({a_1})+f({a_3})}}{{f({a_2})}}$的值为(  )
A.$\frac{{{e^2}+1}}{e}$B.$\frac{{{e^2}+3}}{e+1}$C.$\frac{{{e^2}+5}}{e+2}$D.$\frac{{{e^2}+e+2}}{e+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若(2x-1)2013=a0+a1x+a2x2+…+a2013x2013(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2013}}{{2}^{2013}{a}_{1}}$=(  )
A.-$\frac{1}{2013}$B.$\frac{1}{2013}$C.-$\frac{1}{4026}$D.$\frac{1}{4026}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:对任意的x∈R,有2x<3x;命题q:存在x∈R,使x3=1-x2,则下列命题中为真命题的是(  )
A.非p且qB.p且qC.p且非qD.非p且非q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an},首项a1>0,a2011+a2012>0,a2011•a2012<0,则使数列{an}的前n项和Sn>0成立的最大正整数n是(  )
A.2011B.2012C.4023D.4022

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α=(0,$\frac{π}{2}$),tanα=$\frac{1}{3}$,则sinα$\frac{\sqrt{10}}{10}$;tan2α=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简
(1)$\frac{\sqrt{1-2sin10°cos10°}}{cos10°-\sqrt{1-co{s}^{2}10°}}$;
(2)$\frac{sin(θ-5π)cos(-\frac{π}{2}-θ)cos(8π-θ)}{sin(θ-\frac{3π}{2})sin(-θ-4π)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b,c依次成等比数列,则不等式ax2+bx+c>0的解集是(  )
A.B.RC.{x|x≠-$\frac{b}{2a}$}D.与a的正负有关

查看答案和解析>>

同步练习册答案