精英家教网 > 高中数学 > 题目详情
3.已知α=(0,$\frac{π}{2}$),tanα=$\frac{1}{3}$,则sinα$\frac{\sqrt{10}}{10}$;tan2α=$\frac{3}{4}$.

分析 利用同角三角函数的关系,求出sinα,利用二倍角公式,求出tan2α.

解答 解:∵α∈(0,$\frac{π}{2}$),tanα=$\frac{1}{3}$,
∴cosα=3sinα,
∵cos2α+sin2α=1,
∴sinα=$\frac{\sqrt{10}}{10}$,
tan2α=$\frac{\frac{2}{3}}{1-\frac{1}{9}}$=$\frac{3}{4}$.
故答案为:$\frac{\sqrt{10}}{10}$;$\frac{3}{4}$.

点评 本题考查同角三角函数的关系,二倍角公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知角α的终边过点P(sin$\frac{3π}{4}$,cos$\frac{3π}{4}$),且α∈[0,2π),则α=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集U={a,b,c,d},集合M={a,b},N={b,c},则∁U(M∪N)=(  )
A.{a,c,d}B.{a,b,c}C.{c}D.{d}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a,b是不共线的两个向量,已知$\overrightarrow{AB}$=2a+kb,$\overrightarrow{BC}$=a+b,$\overrightarrow{CD}$=a-2b,若A、B、D三点共线,则k的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点(-1,0)作抛物线y=x2+x+1的切线,切线方程为y=x+1或y=-3x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x(9-x)>0的解集是(0,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在曲线y=x2+x上取点P(2,6)及邻近点Q(2+△x,6+△y),那么$\frac{△y}{△x}$为  (  )
A.△x+2B.2△x+(△x)2C.△x+5D.3△x+(△x)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列数列中为递增数列的是(  )
A.{sinnπ}B.{n2-9n+5}C.{$\frac{2n+1}{{n}^{2}}$}D.{$\frac{{n}^{2}}{{n}^{2}+1}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x=$\frac{1}{2}$,则(3+2x)10的展开式中最大的项为(  )
A.第一项B.第三项C.第六项D.第八项

查看答案和解析>>

同步练习册答案