ijµØÒ»ÌìµÄζȣ¨µ¥Î»£º¡ãC£©ËæÊ±¼ät£¨µ¥Î»£ºÐ¡Ê±£©µÄ±ä»¯½üËÆÂú×㺯Êý¹ØÏµ£ºf£¨t£©=24-4sin¦Øt-4
3
cos¦Øt£¬t¡Ê[0£¬24]
£¬ÇÒÔçÉÏ8ʱµÄζÈΪ24¡ãC£¬¦Ø¡Ê(0£¬
¦Ð
8
)
£®
£¨1£©Çóº¯ÊýµÄ½âÎöʽ£¬²¢ÅжÏÕâÒ»ÌìµÄ×î¸ßζÈÊǶàÉÙ£¿³öÏÖÔÚºÎʱ£¿
£¨2£©µ±µØÓÐһͨÏüÓªÒµµÄ³¬ÊУ¬ÎÒ½ÚÊ¡¿ªÖ§£¬¹òÔÚÔÚ»·¾³Î¶ȳ¬¹ý28¡ãCʱ£¬¿ªÆôÖÐÑë¿Õµ÷½µÎ£¬·ñÔò¹Ø±ÕÖÐÑë¿Õµ÷£¬ÎÊÖÐÑë¿Õµ÷Ó¦ÔÚºÎʱ¿ªÆô£¿ºÎʱ¹Ø±Õ£¿
¿¼µã£ºº¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦ÓÃ
רÌ⣺Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨1£©ÀûÓÃÁ½½ÇºÍÓë²îµÄÈý½Çº¯Êý»¯¼òº¯ÊýµÄ±í´ïʽ£¬ÀûÓÃÒÑÖªÌõ¼þÇó³ö²ÎÊýÖµ£¬¼´¿ÉµÃµ½½âÎöʽ£®
£¨2£©ÀûÓú¯ÊýµÄ½âÎöʽֱ½ÓÇó³öʱ¼ät£¬¼´¿ÉµÃµ½ËùÇó½á¹û£®
½â´ð£º £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨1£©ÒÀÌâÒâf(t)=24-4sin¦Øt-4
3
cos¦Øt=24-8sin(¦Øt+
¦Ð
3
)
¡­£¨2·Ö£©
ÒòΪÔçÉÏ8ʱµÄζÈΪ24¡ãC£¬¼´f£¨8£©=24£¬
sin(8¦Ø+
¦Ð
3
)=0⇒8¦Ø+
¦Ð
3
=k¦Ð⇒¦Ø=
1
8
(k-
1
3
)¦Ð (k¡ÊZ)
¡­£¨3·Ö£©
¡ß¦Ø¡Ê(0£¬
¦Ð
8
)
£¬¹ÊÈ¡k=1£¬¦Ø=
¦Ð
12
£¬
ËùÇóº¯Êý½âÎöʽΪf(t)=24-8sin(
¦Ð
12
t+
¦Ð
3
)£¬ t¡Ê(0£¬24]
£®¡­£¨5·Ö£©
ÓÉsin(
¦Ð
12
t+
¦Ð
3
)=-1
£¬
¦Ð
12
t+
¦Ð
3
¡Ê(
¦Ð
3
£¬
7¦Ð
3
)
£¬¿ÉÖª
¦Ð
12
t+
¦Ð
3
=
3¦Ð
2
⇒t=14
£¬
¼´ÕâÒ»ÌìÔÚ14ʱҲ¾ÍÊÇÏÂÎç2ʱ³öÏÖ×î¸ßζȣ¬×î¸ßζÈÊÇ32¡ãC£®¡­£¨7·Ö£©
£¨2£©ÒÀÌâÒ⣺Áî24-8sin(
¦Ð
12
t+
¦Ð
3
)=28
£¬¿ÉµÃsin(
¦Ð
12
t+
¦Ð
3
)=-
1
2
¡­£¨9·Ö£©
¡ß
¦Ð
12
t+
¦Ð
3
¡Ê(
¦Ð
3
£¬
7¦Ð
3
)
£¬¡à
¦Ð
12
t+
¦Ð
3
=
7¦Ð
6
»ò
¦Ð
12
t+
¦Ð
3
=
11¦Ð
6
£¬
¼´t=10»òt=18£¬¡­£¨11·Ö£©
¹ÊÖÐÑë¿Õµ÷Ó¦ÔÚÉÏÎç10ʱ¿ªÆô£¬ÏÂÎç18ʱ£¨¼´ÏÂÎç6ʱ£©¹Ø±Õ¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÈý½Çº¯ÊýµÄ»¯¼òÇóÖµ£¬½âÎöʽµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µãP£¨Sn£¬an£©ÔÚÖ±Ïߣ¨3-m£©x+2my-m-3=0£¨m¡ÊN+£¬m¡Ù3£©ÉÏ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{an}µÄ¹«±Èq=f£¨m£©£¬ÊýÁÐ{bn}Âú×ãb1=3£¬bn=
3
2
f£¨bn-1£©£¨n¡ÊN+£¬n¡Ý2£©£¬ÇóÖ¤£º{
1
bn
}ΪµÈ²îÊýÁУ¬²¢ÇóͨÏîbn
£¨3£©Èôm=1£¬Cn=
an
bn
£¬TnΪÊýÁÐ{Cn}µÄǰnÏîºÍ£¬ÇóTnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=
|x|
x
+|x|µÄͼÏóÈçÏÂͼËùʾ£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢
B¡¢
C¡¢
D¡¢

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïßy=x+1ÓëÔ²x2+y2=1µÄλÖùØÏµÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ýµãP£¨1£¬
2
£©µÄÖ±Ïßl½«Ô²£¨x-2£©2+y2=4·Ö³ÉÁ½¶Î»¡£¬µ±ÁÓ»¡Ëù¶ÔµÄÔ²ÐĽÇ×îСʱ£¬Ö±ÏßlµÄбÂÊkµÈÓÚ£¨¡¡¡¡£©
A¡¢-
2
2
B¡¢
2
2
C¡¢-
1
2
D¡¢
1
2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬Èôf£¨x£©=x£¬Ôò³ÆxΪf£¨x£©µÄ¡°²»¶¯µã¡±£¬Èôf[f£¨x£©]=x£¬Ôò³ÆxΪf£¨x£©µÄ¡°Îȶ¨µã¡±£¬º¯Êýf£¨x£©µÄ¡°²»¶¯µã¡±ºÍ¡°Îȶ¨µã¡±µÄ¼¯ºÏ·Ö±ð¼ÇΪAºÍB£¬¼´A={x|f£¨x£©=x}£¬B={x|f[f£¨x£©]=x}£®
£¨I£©Éèf£¨x£©=3x+4£¬Ç󼯺ÏAºÍB£»
£¨¢ò£©Èôf£¨x£©=
1
1-ax
£¬∅?A⊆B£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£©Èôf£¨x£©=ax2£¬ÇóÖ¤£ºA=B£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=
3
2
sin2x+
1
2
cos2x£¬Èô½«º¯Êýf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ
¦Ð
12
¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦º¯ÊýΪg£¨x£©£¬Ôò£¨¡¡¡¡£©
A¡¢f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=
¦Ð
3
¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÔ­µã¶Ô³Æ
B¡¢f£¨x£©µÄͼÏó¹ØÓڵ㣨
¦Ð
4
£¬0£©¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÖ±Ïßx=
¦Ð
4
¶Ô³Æ
C¡¢f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßx=
¦Ð
6
¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÔ­µã¶Ô³Æ
D¡¢f£¨x£©µÄͼÏó¹ØÓڵ㣨
5¦Ð
12
£¬0£©¶Ô³Æ£¬g£¨x£©Í¼Ïó¹ØÓÚÖ±Ïßx=
¦Ð
6
¶Ô³Æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇúÏßCµÄ²ÎÊý·½³ÌÊÇ
x=2+2cos¦È
y=2sin¦È
£¨¦ÈΪ²ÎÊý£¬ÇҦȡʣ¨¦Ð£¬2¦Ð£©£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßDµÄ·½³ÌΪ¦Ñsin(¦È+
¦Ð
4
)=0
£¬È¡ÏßCÓëÇúÏßDµÄ½»µãΪP£¬Ôò¹ý½»µãPÇÒÓëÇúÏßCÏàÇеļ«×ø±ê·½³ÌÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[0£¬1]£¬ÖµÓòΪ[1£¬2]£¬Ôòf£¨x+2£©µÄ¶¨ÒåÓòÊÇ
 
£¬ÖµÓòÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸