精英家教网 > 高中数学 > 题目详情
(2009•大连二模)选修4-4;坐标系与参数方程
已知直线l是过点P(-1,2),倾斜角为
2
3
π
的直线原方程ρ=2cos(θ+
π
3
)

(I)求直线l的参数方程;
(II)设直线l与圆相交于M、N两点,求|PM|•|PN|的值.
分析:(I)由题意可得,直线l的参数方程为 
x=-1+tcos
2
3
π
y=2+tsin
3
,化简可得结果.
(II)把圆的极坐标方程化为直角坐标方程可得 t2+(3+2
3
)t+6+2
3
=0,由根与系数的关系可得 t1•t2=6+2
3
,再由|PM|•|PN|=|t1|•|t2|=|t1•t2|求得结果.
解答:解:(I)直线l过点P(-1,2),且倾斜角为
3
,故直线l的参数方程为 
x=-1+tcos
2
3
π
y=2+tsin
3

即 
x=-1-
1
2
t
y=2+
3
t
2
(t为参数).
 (II)圆方程 ρ=2cos(θ+
π
3
)=2(
1
2
cosθ-
3
2
sinθ ),
即ρ2=2(
1
2
ρ•cosθ-
3
2
ρ•sinθ)=ρ cosθ-
3
ρsinθ,
化为直角坐标方程为 (x-
1
2
)2+(y-
3
2
)2=1.
x=-1-
1
2
t
y=2+
3
t
2
代入  (x-
1
2
)2+(y-
3
2
)2=1.
化简可得 t2+(3+2
3
)t+6+2
3
=0.
设此一元二次方程式的两个根分别为 t1和 t2,则由根与系数的关系可得 t1•t2=6+2
3

由题意可得|PM|•|PN|=|t1|•|t2|=|t1•t2|=6+2
3
点评:本题主要考查直线的参数方程,参数的几何意义,把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•大连二模)已知复数z=(1+i)2+i2009,则复数z的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)α、β为两个互相平行的平面,a、b为两条不重合的直线,下列条件:
①a∥α,b?β;
②a⊥α,b∥β
③a⊥α,b⊥β
④a∥α,b∥β.
其中是a∥b的充分条件的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知x0为函数f(x)=(
1
5
x-log2x的零点,若0<x1<x0,则f(x1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)如图所示,若向圆x2+y2=2内随机投一点(该点落在圆x2+y2=2内任何一点是等可能的),则所投的点落在圆与y轴及曲线y=x2(x≥0)围成的阴影图形S内部的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)(
1
2
x+
1
2
8=a0+a 1x+a2x2+…a7x7+a8x8,其中ak(k=0,1,2,…,7,8)都是常数,则a1+2a2+3a3+…+7a7+8a8的值为(  )

查看答案和解析>>

同步练习册答案