精英家教网 > 高中数学 > 题目详情
已知正三棱柱的正(主)视图和侧(左)视图如图所示. 设的中心分别是,现将此三棱柱绕直线旋转,射线旋转所成的角为弧度(可以取到任意一个实数),对应的俯视图的面积为,则函数的最大值为          ;最小正周期为          .
说明:“三棱柱绕直线旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,旋转所成的角为正角,顺时针方向旋转时,旋转所成的角为负角.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

直线a ⊥平面,b∥,则a与b的关系为()
A.a⊥b且a与b相交B.a⊥b且a与b不相交
C.a⊥bD.a 与b不一定垂直

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 的中点,动点在侧棱上,且不与点重合.
(I)当时,求证:
(II)设二面角的大小为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设平面α∥β,两条异面直线AC和BD分别在平面α、β内,线段AB、CD中点分别为M、N,设MN=a,线段AC=BD=2a,求异面直线AC和BD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点。
(1)求直线A1C与平面A1AB所成角的正弦值;
(2)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分别是棱AD、AA、AB的中点。
(1)  证明:直线EE//平面FCC
(2)  求二面角B-FC-C的余弦值。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知中,斜边上的高,以为折痕,将折 起,使为直角。
(1)求证:平面平面;(2)求证:
(3) 求点到平面的距离;(4) 求点到平面的距离;
                    
      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图6,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点,
(1)求证:平面
(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线和两个平面β,给出下列四个命题:
①若,则内的任何直线都与平行;
②若α,则内的任何直线都与垂直;
③若β,则β内的任何直线都与平行;
④若β,则β内的任何直线都与垂直.
则其中________是真命题.

查看答案和解析>>

同步练习册答案