精英家教网 > 高中数学 > 题目详情
(2012•安徽)如图,F1、F2分别是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)已知△AF1B的面积为40
3
,求a,b 的值.
分析:(Ⅰ)直接利用∠F1AF2=60°,求椭圆C的离心率;
(Ⅱ)设|BF2|=m,则|BF1|=2a-m,利用余弦定理以及已知△AF1B的面积为40
3
,直接求a,b 的值.
解答:解:(Ⅰ)∠F1AF2=60°?a=2c?e=
c
a
=
1
2

(Ⅱ)设|BF2|=m,则|BF1|=2a-m,
在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2-2|BF2||F1F2|cos120°
?(2a-m)2=m2+a2+am.?m=
3
5
a

△AF1B面积S=
1
2
|BA||F1A|sin60°
?
1
2
×a×(a+
3
5
a) ×
3
2
=40
3

?a=10,
∴c=5,b=5
3
点评:本题考查椭圆的简单性质,余弦定理的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽)如图所示,程序框图(算法流程图)的输出结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)如图,长方体ABCD-A1B1C1D1 中,底面A1B1C1D1 是正方形,O是BD的中点,E是棱AA1上任意一点.
(Ⅰ)证明:BD⊥EC1
(Ⅱ)如果AB=2,AE=
2
,OE⊥EC1,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽)如图,点F1(-c,0),F2(c,0)分别是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点,经过F1做x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2垂线交直线x=
a2
c
于点Q.
(Ⅰ)如果点Q的坐标是(4,4),求此时椭圆C的方程;
(Ⅱ)证明:直线PQ与椭圆C只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

 [2012·安徽卷] 如图1-3,长方体ABCDA1B1C1D1中,底面A1B1C1D1是正方形,OBD的中点,E是棱AA1上任意一点.

(1)证明:BDEC1

(2)如果AB=2,AEOEEC1,求AA1的长.

图1-3

查看答案和解析>>

同步练习册答案