精英家教网 > 高中数学 > 题目详情
13.若向量$\overrightarrow a=(3,1)$,$\overrightarrow b$=(m,m+1),且$\overrightarrow a$∥$\overrightarrow b$,则实数m的值为(  )
A.$-\frac{3}{2}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{2}$

分析 直接利用向量共线的坐标表示列式化简求值.

解答 解:∵$\overrightarrow a=(3,1)$,$\overrightarrow b$=(m,m+1),且$\overrightarrow a$∥$\overrightarrow b$,得
3(m+1)-1×m=0,解得:m=-$\frac{3}{2}$.
故选:A.

点评 平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$?a1a2+b1b2=0,$\overrightarrow{a}$∥$\overrightarrow{b}$?a1b2-a2b1=0,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的奇函数f(x)满足f(x-1)=f(x+3),且x∈(-1,0)时,f(x)=2x+$\frac{1}{5}$,则f(log220)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{OA}$=(4,-3),$\overrightarrow{OB}$=(5,-2),$\overrightarrow{OC}$=(m-5,3-2m),$\overrightarrow{OD}$=($\sqrt{m-1}$,2m-8),且A、B、C三点共线,则∠COD=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(  )
A.$\frac{7}{15}$B.$\frac{8}{15}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设随机变量X~N(μ,σ2),函数f(x)=x2+4x+ξ没有零点的概率是$\frac{1}{2}$,则μ=(  )
A.1B.4C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在正三角形ABC中,D是BC上的点,AB=3,BD=1,则$\overrightarrow{AB}•\overrightarrow{AD}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算:(-1-3i)(3+2i)(-1+3i)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在实数集R上的偶函数f(x),在区间[0,+∞)上满足f′(x)>0恒成立,若f(1)<f(lgx).则x的取值范围是{x|0<x<$\frac{1}{10}$或x>10}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知n∈N*,且n>1,三个数ln$\frac{n+1}{n}$、$\frac{1}{n+1}$、$\frac{1}{n}$的大小关系是(  )
A.$\frac{1}{n}$>ln$\frac{n+1}{n}$>$\frac{1}{n+1}$B.ln$\frac{n+1}{n}$>$\frac{1}{n}$>$\frac{1}{n+1}$C.$\frac{1}{n}$>$\frac{1}{n+1}$>ln$\frac{n+1}{n}$D.$\frac{1}{n+1}$>$\frac{1}{n}$>ln$\frac{n+1}{n}$

查看答案和解析>>

同步练习册答案