精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,且三角形PAD为等腰△,PA=PD.
(Ⅰ)求证AD⊥PB;
(Ⅱ)线段AP上是否存在点M,使得MD∥平面PBC?
并说明理由.

【答案】分析:(1)由题意取AD的中点G,连接PG、GB、BD,因△PAD是等腰直角三角形,所以PG⊥AD,再由AB=AD,且∠DAB=60°得BG⊥AD,证出AD⊥平面PGB,即AD⊥PB;
(2)考虑M为AP的中点,由题意取PB的中点F,连接MF、CF,由中位线和题意证出CDMF是平行四边形,得到DM∥CF,由线面平行的判定定理得DM∥平面PCB.
解答:解:(1)取AD的中点G,连接PG、GB、BD
∵PA=PD,
∴PG⊥AD.(2分)
∵AB=AD,且∠DAB=60°,
∴△ABD是正三角形,BG⊥AD,又PG∩BG=G
∴AD⊥平面PGB.
∴AD⊥PB.(6分)
(2)当M为PA的中点时,取PB的中点F,连接MF、CF,
∵M、F分别为PA、PB的中点,
∴MF∥AB,且
∵四边形ABCD是直角梯形,AB∥CD且AB=2CD,
∴MF∥CD且MF=CD.(10分)
∴四边形CDMF是平行四边形.
∴DM∥CF.
∵CF?平面PCB,DM?平面PCB
∴DM∥平面PCB.(12分)

点评:本题主要考查了线面垂直和平行的判定定理的应用,主要用了中位线和等腰三角形的中线证明线线平行和垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案