精英家教网 > 高中数学 > 题目详情

函数,其中是常数,其图象是一条直线,称这个函数为线性函数.对于非线性可导函数,在点附近一点的函数值,可以用如下方法求其近似代替值:.利用这一方法,的近似代替值

    A.大于   B.小于    C.等于    D.与的大小关系无法确定

A


解析:

,则,当且仅当时取等号,所以的近似代替值大于,选择A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三个函数y=sinx+1,y=
x2-2x+2+t
,y=
1
2
(x+
1-t
x
)(x>0)
,它们各自的最小值恰好是函数
f(x)=x3+ax2+bx+c的三个零点(其中t是常数,且0<t<1)
(1)求证:a2=2b+2
(2)设f(x)=x3+ax2+bx+c的两个极值点分别为(x1,m),(x2,n),若|x1-x2|=
6
3
,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax-a),其中a是常数.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax-a),其中a是常数.
(Ⅰ)当a=1时,求f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+1
,对任意x1,x2∈R,恒有|
f(x1)-f(x2)
x1-x2
|<M,其中M是常数,则M的最小值是
 

查看答案和解析>>

同步练习册答案