精英家教网 > 高中数学 > 题目详情
设实部为正数的复数z,满足|z|=
10
,且复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数z;
(2)若
.
z
+
m-i
1+i
(m∈R)为纯虚数,求实数m的值.
考点:复数代数形式的混合运算,复数求模
专题:数系的扩充和复数
分析:(1)设Z=a+bi(a,b∈R且a>0),由条件可得a2+b2=10①,a=-3b②.由①②联立的方程组得a、b的值,即可得到z的值.
(2)根据若
.
z
+
m-i
1+i
(m∈R)为纯虚数,可得
m+5
2
=0
1-m
2
≠0
,由此求得m的值.
解答: 解:(1)设Z=a+bi(a,b∈R且a>0),由|Z|=
10
得:a2+b2=10①.
又复数(1+2i)z=(a-2b)+(2a+b)i在复平面上对应的点在第一、三象限的角平分线上,
则a-2b=2a+b,即a=-3b②.
由①②联立的方程组得a=3,b=-1;或a=-3,b=1.
∵a>0,∴a=3,b=-1,则Z=3-i.
(2)∵
.
Z
+
m-i
1+i
=3+i+
(m-i)(1-i)
2
=
m+5
2
+
1-m
2
i
 为纯虚数,∴
m+5
2
=0
1-m
2
≠0

解得m=-5.
点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1),向量
n
=(
3
cosx,
1
2
),函数f(x)=(
m
+
n
)•
m

(Ⅰ)求f(x)的最小正周期T及单调递增区间;
(Ⅱ)若函数y=f(x)-t在x∈[
π
4
π
2
]上有零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆
x2
a2
+
y2
b2
=1
,点(2,1)在椭圆上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Acos(ωx+φ)的图象如图所示(A>0,ω>0,|φ|<
π
2
).
(1)若f(
π
2
)=-
2
3
,求f(0)的值.
(2)求满足f(x)>-
A
2
的x的取值范围.
(3)若A=1,令g(x)=f(
1
3
x+
π
12
),求方程lg|x|=2g(x)的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线y2=x,过原点O作两条相互垂直的直线,分别交抛物线于点P,Q
(1)求证:直线PQ过定点,并求该定点的坐标.
(2)若过点Q的直线与抛物线的另一交点为R,与x轴的交点为T,且Q为线段RT的中点,求△PQT面积最小时,点Q的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,左、右焦点分别为F1、F2,点P(2,
3
),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x
(Ⅰ)求函数f(x)在R上的解析式;
(Ⅱ)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,a2-2ab+c2=0,bc>a2,请比较a,b,c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读伪代码,若使这个算法执行结果是-5,则a的初始值x是
 

查看答案和解析>>

同步练习册答案