精英家教网 > 高中数学 > 题目详情
设a>0,a2-2ab+c2=0,bc>a2,请比较a,b,c的大小.
考点:不等式的基本性质
专题:不等式的解法及应用
分析:由bc>a2,可知b与c同号.由a>0,a2-2ab+c2=0,可知此方程由两个正根x1,x2,因此x1+x2=2b>0,△=4b2-4c2≥0,b≥c>0.若b=c得出矛盾,于是b>c.因此b2>bc>a2,b>a.再利用a2-2ab+c2=0,a>0,可得(
c
a
)2=2(
b
a
)-1>2-1=1
,于是c>a.
解答: 解:∵bc>a2,∴b与c同号.
又a>0,a2-2ab+c2=0,∴此方程由两个正根x1,x2
∴x1+x2=2b>0,
则△=4b2-4c2≥0,b≥c>0.
若b=c.则a=b=c,与bc>a2矛盾.
∴b>c.
∴b2>bc>a2
∴b>a.
由a2-2ab+c2=0,a>0,
1-2•
b
a
+(
c
a
)2=0

(
c
a
)2=2(
b
a
)-1>2-1=1

∴c>a.
综上可得b>c>a
点评:本题考查了一元二次方程的实数根与判别式的关系、根与系数的关系、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
5
5
,点(1,
2
5
5
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 在x轴上是否存在一定点E,使得对椭圆C的任意一条过E的弦AB,
1
|EA|2
+
1
|EB|2
为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实部为正数的复数z,满足|z|=
10
,且复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数z;
(2)若
.
z
+
m-i
1+i
(m∈R)为纯虚数,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上的点M(x,y)到定点F(1,0)的距离和它到定直线l:x=5的距离的比是常数
5
5

(Ⅰ)求曲线C的方程;
(Ⅱ)过F且斜率为1的直线与曲线C相交于A、B两点.求:
    ①线段AB的中点坐标;     
    ②△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:
x=2+tcosα
y=1+ysinα
(t为参数,α为直线的倾斜角)交椭圆
x2
16
+
y2
4
=1于A、B两点,若点M(2,1)恰好为线段AB的中点,求直线L的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z是复数,z+2i、(1+i)z均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A、B、C都在圆x2+y2=1上,A和B的横坐标分别是1和
3
5
,BC∥OA,记∠AOB=α,∠BOC=β.
(1)求
OB
OC
的值;
(2)求sin(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
1
1-i
的模是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+2xf′(
π
3
),则f′(
π
3
)=
 

查看答案和解析>>

同步练习册答案