【题目】已知函数
.
(1)若曲线
在
处切线与坐标轴围成的三角形面积为
,求实数
的值;
(2)若
,求证:
.
科目:高中数学 来源: 题型:
【题目】为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在
市与
市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为
,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为
.
(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:
A市居民 | B市居民 | |
喜欢杨树 | 300 | 200 |
喜欢木棉树 | 250 | 250 |
是否有
的把握认为喜欢树木的种类与居民所在的城市具有相关性;
(2)若从所有的路口中随机抽取4个路口,恰有
个路口种植杨树,求
的分布列以及数学期望;
(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为
,求证:
.
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一项针对某一线城市30~50岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:
![]()
(1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.
(2)把购买六类高价商品的金额不低于5000元的中年人称为“高收入人群”,根据已知条件完成2
2列联表,并据此判断能否有95%的把握认为“高收入人群”与性别有关?
![]()
参考公式:
,其中![]()
参考附表:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,焦点为
的抛物线
的准线被椭圆
截得的弦长为
.
(1)求椭圆
的标准方程;
(2)若点
、
到直线
的距离之积为
,求证:直线
与椭圆
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,
为任意实数.
(1)求证:直线
必与圆
相交;
(2)
为何值时,直线
被圆
截得的弦长
最短?最短弦长是多少?
(3)若直线
被圆
截得的弦
的中点为点
,求点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现定义:设
是非零实常数,若对于任意的
,都有
,则称函数
为“关于的
偶型函数”
(1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明
(2)设定义域为的“关于的
偶型函数”在区间
上单调递增,求证在区间
上单调递减
(3)设定义域为
的“关于
的偶型函数”
是奇函数,若
,请猜测
的值,并用数学归纳法证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生对函数
的性质进行研究,得出如下的结论:
函数在
上单调递减,在
上单调递增;
点
是函数图象的一个对称中心;
函数图象关于直线
对称;
存在常数
,使
对一切实数x均成立,
其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com