精英家教网 > 高中数学 > 题目详情
椭圆的离心率为,且经过点过坐标原点的直线均不在坐标轴上,与椭圆M交于A、C两点,直线与椭圆M交于B、D两点
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值
(1);(2)详见解析;(3)最小值为

试题分析:(1)依题意有,再加上,解此方程组即可得的值,从而得故椭圆 的方程(2)由于四边形ABCD是平行四边形,所以ABCD的对角线AC和BD的中点重合
利用(1)所得椭圆方程,联立方程组消去得:,显然点A、C的横坐标是这个方程的两个根,由此可得线段的中点为 同理可得线段的中点为,由于中点重合,所以解得,(舍)这说明都过原点即相交于原点(3)由于对角线过原点且该四边形为菱形,所以其面积为由方程组易得点A的坐标(用表示),从而得(用表示);同理可得(由于,故仍可用表示)这样就可将表示为的函数,从而求得其最小值
试题解析:(1)依题意有,又因为,所以得
故椭圆的方程为                                    3分
(2)依题意,点满足
所以是方程的两个根

所以线段的中点为 
同理,所以线段的中点为         5分
因为四边形是平行四边形,所以
解得,(舍)
即平行四边形的对角线相交于原点                7分
(3)点满足
所以是方程的两个根,即

同理,                     9分
又因为,所以,其中
从而菱形的面积

整理得,其中                 10分
故,当时,菱形的面积最小,该最小值为      12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:(a>b>0),过点(0,1),且离心率为
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线lx=2x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知常数,向量,经过定点为方向向量的直线与经过定点为方向向量的直线相交于,其中
(1)求点的轨迹的方程;(2)若,过的直线交曲线两点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,右焦点到直线的距离为
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为)的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在坐标轴上的双曲线经过两点
(1)求双曲线的方程;
(2)设直线交双曲线两点,且线段被圆三等分,求实数的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1F2分别是椭圆C=1(ab>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求ab的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E=1(ab>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为上的点 ,,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2=1.
 
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

查看答案和解析>>

同步练习册答案