精英家教网 > 高中数学 > 题目详情
已知椭圆E=1(ab>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.
(1)=1(2)x2y2
(1)由题知2|F1F2|=|MF1|+|MF2|,
即2×2c=2a,得a=2c.
又由c=3,解得c=1,a=2,b.
∴椭圆E的方程为=1.
(2)假设以原点为圆心,r为半径的圆满足条件.
(ⅰ)若圆的切线的斜率存在,并设其方程为ykxm,则rr2,①
消去y,整理得(3+4k2)x2+8kmx+4(m2-3)=0,设A(x1y1),B(x2y2),有
又∵,∴x1x2y1y2=0,
即4(1+k2)(m2-3)-8k2m2+3m2+4k2m2=0,化简得m2 (k2+1),②
由①②求得r2.
所求圆的方程为x2y2.
(ⅱ)若AB的斜率不存在,设A(x1y1),则B(x1,-y1),∵,∴·=0,有=0,,代入=1,得.此时仍有r2=||=.
综上,总存在以原点为圆心的圆x2y2满足题设条件
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的离心率为,且经过点过坐标原点的直线均不在坐标轴上,与椭圆M交于A、C两点,直线与椭圆M交于B、D两点
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设不与坐标轴平行的直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线(其中).
(1)若定点到双曲线上的点的最近距离为,求的值;
(2)若过双曲线的左焦点,作倾斜角为的直线交双曲线于两点,其中是双曲线的右焦点.求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动直线与椭圆交于两不同点,且△的面积=,其中为坐标原点.
(1)证明均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是任意实数,则方程所表示的曲线一定不是(    )
A.直线B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

坐标平面上有两个定点A,B和动点P,如果直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

同步练习册答案