精英家教网 > 高中数学 > 题目详情
已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。
(1)x2=1(x>0) ;(2)|PQ|min=6;(3) a≤-1.

试题分析:(1)由题意可知P点轨迹为双曲线,由a,c求出b的值,则方程可求;
(2)当直线斜率存在时,设出直线方程,和双曲线方程联立后求得判别式大于0,再由两根之和大于0,且两根之积大于0联立求得k的范围由弦长公式写出弦长,借助于k的范围求弦长的范围,当斜率不存在时直接求解;
(3)由题意,|CR|=|PQ|。若直线PQ不垂直于x轴,由|CR|=-a=-a
-a=·,a==-1+<-1,若直线PQ垂直于x轴,这时|PQ|=6,|CR|=2-a ∴a=-1, 综上a≤-1.
试题解析:解:(1)由双曲线的定义得:曲线E是以A, B为焦点的双曲线的右支,所以曲线E的方程为:x2=1(x>0)                          2分
(2)若直线PQ不垂直于x轴,设直线PQ的方程为:y=k(x-2)
,得(3-k2)x2+4k2x-(4k2+3)=0        3分
设p(x1,y1),Q(x2,y2),这里x1>0,x2>0
则:   得:k2>3 6分
|PQ|=|x1-x2|==6+>6        6分
若直线PQ垂直于x轴,则直线PQ的方程为x=2。        8分
这时P(2,3),Q(2,-3),所以|PQ|=6,
综上:|PQ|min=6  9分
(3)据题意得:|CR|=|PQ|。若直线PQ不垂直于x轴,
由|CR|=-a=-a                        10分
-a=·,a==-1+<-1  12分
若直线PQ垂直于x轴,这时|PQ|=6,|CR|=2-a
∴a=-1.                                         13分
综上a≤-1.                                        14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知点A(1,0)及圆,C为圆B上任意一点,求AC垂直平分线与线段BC的交点P的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知常数,向量,经过定点为方向向量的直线与经过定点为方向向量的直线相交于,其中
(1)求点的轨迹的方程;(2)若,过的直线交曲线两点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点为O(0,0),焦点为F(0,1).

(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1F2分别是椭圆C=1(ab>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.

(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求ab的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E=1(ab>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点,且渐近线为的双曲线方程是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案