精英家教网 > 高中数学 > 题目详情
与椭圆共焦点,且渐近线为的双曲线方程是(   )
A.B.C.D.
A

试题分析:因为椭圆的焦点为,设双曲线的方程为,依题意可知,所以,解得,所以双曲线的方程为,故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线(其中).
(1)若定点到双曲线上的点的最近距离为,求的值;
(2)若过双曲线的左焦点,作倾斜角为的直线交双曲线于两点,其中是双曲线的右焦点.求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的方程为 ,斜率为1的直线不经过原点,而且与椭圆相交于两点,为线段的中点.
(1)问:直线能否垂直?若能,求之间满足的关系式;若不能,说明理由;
(2)已知的中点,且点在椭圆上.若,求之间满足的关系式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动直线与椭圆交于两不同点,且△的面积=,其中为坐标原点.
(1)证明均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,使与椭圆交于不同的两点,且线段恰被直线平分?若存在,求出的斜率取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线lyx,圆Ox2y2=5,椭圆E=1(a>b>0)的离心率e,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1=1,椭圆C2C1的短轴为长轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设直线l与椭圆C2相交于不同的两点AB,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率,右焦点为,方程的两个实根,则点(   )
A.必在圆B.必在圆
C.必在圆D.以上三种情况都有可能

查看答案和解析>>

同步练习册答案