精英家教网 > 高中数学 > 题目详情
已知动直线与椭圆交于两不同点,且△的面积=,其中为坐标原点.
(1)证明均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
(1)证明详见解析;(2);(3)不存在点满足要求.

试题分析:(1)先检验直线斜率不存在的情况,后假设直线的方程,利用弦长公式求出的长,利用点到直线的距离公式求点到直线的距离,根据三角形的面积公式,即可求得均为定值;(2)由(1)可求线段的中点的坐标,代入并利用基本不等式求最值;(3)假设存在,使得,由(1)得,从而求得点的坐标,可以求出直线的方程,从而得到结论.
试题解析:(1)当直线的斜率不存在时,P,Q两点关于轴对称,所以
因为在椭圆上,因此   ①
又因为所以   ②
由①、②得,此时     2分
当直线的斜率存在时,设直线的方程为
由题意知,将其代入,得
其中 (*)

所以
因为点到直线的距离为
所以

,整理得,且符合(*)式
此时

综上所述,结论成立         5分
(2)解法一:
(1)当直线的斜率不存在时,由(I)知
因此               6分
(2)当直线的斜率存在时,由(I)知

所以

所以,当且仅当,即时,等号成立
综合(1)(2)得的最大值为             9分
解法二:因为

所以
当且仅当时等号成立
因此的最大值为                   9分
(3)椭圆C上不存在三点,使得 10分
证明:假设存在满足
由(I)得

解得
所以只能从中选取,只能从中选取
因此只能在这四点中选取三个不同点
而这三点的两两连线中必有一条过原点
矛盾
所以椭圆上不存在满足条件的三点       14分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知离心率的椭圆一个焦点为.
(1)求椭圆的方程;
(2) 若斜率为1的直线交椭圆两点,且,求直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在坐标轴上的双曲线经过两点
(1)求双曲线的方程;
(2)设直线交双曲线两点,且线段被圆三等分,求实数的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点的直线与椭圆C相交于A、B两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点是坐标原点,对称轴是轴的抛物线经过点
(1)求抛物线的标准方程;
(2)直线过定点,斜率为,当为何值时,直线与抛物线有公共点?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,且,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.
(1)求椭圆方程;
(2)设椭圆与直线相交于不同的两点M、N,又点,当时,求实数m的取值范围,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E=1(ab>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点,且渐近线为的双曲线方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与曲线的交点个数是      

查看答案和解析>>

同步练习册答案