精英家教网 > 高中数学 > 题目详情
已知双曲线(其中).
(1)若定点到双曲线上的点的最近距离为,求的值;
(2)若过双曲线的左焦点,作倾斜角为的直线交双曲线于两点,其中是双曲线的右焦点.求△的面积.
(1);(2)

试题分析:(1)本题涉及两点间距离,因此我们设双曲线上任一点为,这样可表示出距离的平方,注意到双曲线上的点满足,故要对进行分类讨论以求最小值;(2)设,由于,因此,而可以用直线方程与双曲线方程联立方程组,消去可得的一元二次方程,从这个方程可得,从而得三角形面积.
试题解析:(1)设点在双曲线上,由题意得:
由双曲线的性质,得。     1分
(i)若,则当时,有最小值。最小值,所以。     3分
(ii)若,则当时,有最小值,此时,解得。     6分
(2),直线轴垂直时,,此时,△的面积=.         7分
直线轴不垂直时,直线方程为,         8分

解法1:将代入双曲线方程,整理得:,即
         10分
所以,         11分

=.     14分
解法2:将代入双曲线方程,整理得:
,         10分
,         11分

到直线距离
的面积

=.     14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率的椭圆一个焦点为.
(1)求椭圆的方程;
(2) 若斜率为1的直线交椭圆两点,且,求直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知顶点是坐标原点,对称轴是轴的抛物线经过点
(1)求抛物线的标准方程;
(2)直线过定点,斜率为,当为何值时,直线与抛物线有公共点?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E=1(ab>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:
条件
方程
周长为10

面积为10

中,

则满足条件①、②、③的点轨迹方程按顺序分别是 
A.    B. 
C.     D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2=1.
 
(1)若一椭圆与该双曲线共焦点,且有一交点P(2,3),求椭圆方程.
(2)设(1)中椭圆的左、右顶点分别为AB,右焦点为F,直线l为椭圆的右准线,Nl上的一动点,且在x轴上方,直线AN与椭圆交于点M.若AMMN,求∠AMB的余弦值;
(3)设过AFN三点的圆与y轴交于PQ两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A (p为常数,p>0),Bx轴负半轴上的一个动点,动点M使得|AM|=|AB|,且线段BM的中点Gy轴上.

(1)求动点M的轨迹C的方程;
(2)设EF为曲线C的一条动弦(EF不垂直于x轴),其垂直平分线与x轴交于点T(4,0),当p=2时,求|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点,且渐近线为的双曲线方程是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案