精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点为O(0,0),焦点为F(0,1).

(1)求抛物线C的方程;
(2)过点F作直线交抛物线C于A,B两点,若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.
(1) x2=4y   (2)

解:(1)由题意可设抛物线C的方程为x2=2py(p>0),则
=1,所以抛物线C的方程为x2=4y.
(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.
消去y,整理得x2-4kx-4=0,
所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.

解得点M的横坐标xM===.
同理,点N的横坐标xN=.
所以|MN|=|xM-xN|=
=8
=.
令4k-3=t,t≠0,则k=.
当t>0时,|MN|=2>2.
当t<0时,|MN|=2.
综上所述,当t=-,即k=-时,|MN|的最小值是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)试判断圆轴的位置关系;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-2,0)和B(2,0),曲线E上任一点P满足|PA|-|PB|=2.
(1)求曲线E的方程;
(2)延长PB与曲线E交于另一点Q,求|PQ|的最小值;
(3)若直线l的方程为x=a(a≤),延长PB与曲线E交于另一点Q,如果存在某一位置,使得从PQ的中点R向l作垂线,垂足为C,满足PC⊥QC,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,短轴一个端点到右焦点的距离为.
(1)求椭圆的方程;
(2)设不与坐标轴平行的直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆C:的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线的左焦点,离心率为e,过F且平行于双曲线渐近线的直线与圆交于点P,且点P在抛物线上,则e2 =(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P,离心率是.
(1)求椭圆C的标准方程;
(2)直线l过点E (-1,0)且与椭圆C交于AB两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

坐标平面上有两个定点A,B和动点P,如果直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率,右焦点为,方程的两个实根,则点(   )
A.必在圆B.必在圆
C.必在圆D.以上三种情况都有可能

查看答案和解析>>

同步练习册答案