精英家教网 > 高中数学 > 题目详情
是任意实数,则方程所表示的曲线一定不是(    )
A.直线B.双曲线C.抛物线D.圆
C

试题分析:当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆
(1)求椭圆及圆的方程;
(2)若点是圆劣弧上一动点(点异于端点),直线分别交线段,椭圆于点,直线交于点
(ⅰ)求的最大值;
(ⅱ)试问:..,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:(a>b>0),过点(0,1),且离心率为
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线lx=2x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心为原点,长轴在轴上,离心率,又椭圆上的任一点到椭圆的两焦点的距离之和为.

(1)求椭圆的标准方程;
(2)若平行于轴的直线与椭圆相交于不同的两点,过两点作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(1,0)及圆,C为圆B上任意一点,求AC垂直平分线与线段BC的交点P的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1;
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线的焦点为,已知为抛物线上的两个动点,且满足,过弦的中点作抛物线准线的垂线,垂足为,则的最大值为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E=1(ab>0),F1(-c,0),F2(c,0)为椭圆的两个焦点,M为椭圆上任意一点,且|MF1|,|F1F2|,|MF2|构成等差数列,点F2(c,0)到直线lx的距离为3.
(1)求椭圆E的方程;
(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E恒有两个交点AB,且,求出该圆的方程.

查看答案和解析>>

同步练习册答案