精英家教网 > 高中数学 > 题目详情
6.若关于x的方程$\sqrt{x+1}$-x=m有两个不同的实根,求实数m的取值范围.

分析 根据方程的根与对应函数零点之间的关系,可将方程$\sqrt{x+1}$-x=m有两个不同的实根问题转化为函数y=$\sqrt{x+1}$与函数y=x+m的图象有两个交点,我们易求出实数m的取值范围

解答 解:方程$\sqrt{x+1}$-x=m有两个不同的实根问题转化为函数y=$\sqrt{x+1}$与函数y=x+m的图象有两个交点,
由$\sqrt{x+1}$=x+m,两边平方可得x2+(2m-1)x+m2-1=0,
△=(2m-1)2-4(m2-1)=0,可得m=$\frac{5}{4}$,
将(-1,0)代入y=x+m,可得m=1,
∴1≤m<$\frac{5}{4}$.

点评 本题考查的知识点是直线和抛物线的方程的应用,其中根据方程的根与对应函数零点之间的关系,将问题转化为函数的零点问题是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若函效g(x)=$\frac{{3}^{x}+a}{{3}^{x}-a}$为奇函数,则实数a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解下列各一元二次不等式:
(1)(x+3)(x-1)>-3;
(2)2x2-7x≤x2+12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且$\frac{BG}{GC}=\frac{DH}{HC}$=2,求证:直线EG,FH,AC相交于同一点P.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某几何体的三视图如图所示,则该几何体的体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.则通项公式an=13-3n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知四棱锥P-ABCD,它的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,又PC=a,E为PA的中点.
(1)求证:平面EBD⊥平面ABCD;
(2)求点E到平面PBC的距离;
(3)求二面角A-BE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{a{x^2}}}{b+cx}$(a,b,c为常数),a,b分别是双曲线x2-$\frac{y^2}{3}$=1的实半轴长、半焦距,且直线x-cy=2和直线y=x-3垂直.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)<$\frac{{({k+1})x-k}}{2-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)={3^{{x^2}-2ax+5}}$在区间(-∞,1]内单调递减,则a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.[1,3)D.[1,3]

查看答案和解析>>

同步练习册答案