精英家教网 > 高中数学 > 题目详情
1.某几何体的三视图如图所示,则该几何体的体积为$\frac{4\sqrt{3}}{3}$.

分析 由该几何体的三视图得到该几何体是底面边长为2,高为$\sqrt{3}$的正四棱锥,由此能求出该几何体的体积.

解答 解:由该几何体的三视图得到该几何体是底面边长为2,高为$\sqrt{3}$的正四棱锥,
∴该几何体的体积为:
V=$\frac{1}{3}SH$=$\frac{1}{3}×{2}^{2}×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为:$\frac{4\sqrt{3}}{3}$.

点评 本题考查几何体的体积的求法,是基础题,解题时要认真审题,注意几何体的三视图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知方程x=3-lgx,下列说法正确的是(  )
A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内
C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3-3x+4.
(1)求函数f(x)的解析式;
(2)①证明函数f(x)在(0,1)上是单调递减函数;
②判断函数f(x)在[1,+∞]上的单调性(不要证明);
(3)根据你对该函数的理解,作出函数f(x)(x∈R)的图象.(不需要说明理由,但要有关键特征,标出关键点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log2${\;}^{(a{x}^{2}-2x+2)}$
(1)若f(x)的定义域为实数集R,求实数a的取值范围,并求此时f(x)的值域.
(2)若方程log2${\;}^{(a{x}^{2}-2x+2)}$=2在[$\frac{1}{2}$,2]内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O为坐标原点,实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{3x+4y≤12}\\{x-1≥0}\end{array}\right.$,P(x,y)为该不等式组所表示的平面区域内任意一点,使z=x+2y取最大值的点为A点,则|OP|•|AO|•cos∠AOP的最大值等于(  )
A.$\frac{97}{16}$B.$\frac{11}{2}$C.$\frac{167}{28}$D.$\frac{38}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若关于x的方程$\sqrt{x+1}$-x=m有两个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,则x,y,z满足的下列关系式为(  )
A.z≥y>xB.z≥x>yC.x>z≥yD.z>x≥y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线l:x+y-4=0与圆C:x2+y2+2x=0的位置关系为相离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.否定“任何一个三角形的外角都至少有两个钝角”时正确的说法是(  )
A.存在一个三角形,其外角最多有一个钝角
B.任何一个三角形的外角都没有两个钝角
C.没有一个三角形的外角有两个钝角
D.存在一个三角形,其外角有两个钝角

查看答案和解析>>

同步练习册答案