精英家教网 > 高中数学 > 题目详情

已知函数为自然对数的底数)w.w.w.k.s.5.u.c.o.m    

(Ⅰ)求的最小值;

(Ⅱ)设不等式的解集为P,且,求实数a的取值范围;

解析:(Ⅰ)的导数

,解得;令

解得.………………………2分

从而内单调递减,在内单调递增.

所以,当时,取得最小值.……………………………5分

(II)因为不等式的解集为P,且

所以,对任意的,不等式恒成立,……………………………6分

,得

时,上述不等式显然成立,故只需考虑的情况。………………7分

变形为  ………………………………………………8分

,则 w.w.w.k.s.5.u.c.o.m    

    令,解得;令

解得.…………………………10分

    从而内单调递减,在内单调递增.

所以,当时,取得最小值,从而,

所求实数的取值范围是.………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共12分)已知函数为自然对数的底数),为常数),是实数集 上的奇函数.(Ⅰ)求证:

(Ⅱ)讨论关于的方程:的根的个数;

(Ⅲ)设,证明:为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:2013-2014学年吉林通化第一中学高三上学期第二次月考理科数学试卷(解析版) 题型:解答题

已知函数其中为自然对数的底数, .

(1)设,求函数的最值;

(2)若对于任意的,都有成立,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省温州市高二下学期期中考试文科数学(解析版) 题型:解答题

已知函数.(为自然对数的底)

(Ⅰ)求的最小值;

(Ⅱ)是否存在常数使得对于任意的正数恒成立?若存在,求出的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012届河北省高三第一学期期中考试文科数学试卷(解析版) 题型:解答题

已知.函数.e为自然对数的底

(1)当时取得最小值,求的值;

(2)令,求函数在点P处的切线方程

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津市高三第二次月考理科数学 题型:解答题

已知函数其中为自然对数的底数

(1)当时,求曲线处的切线方程;

(2)若函数为单调函数,求实数的取值范围;

(3)若时,求函数的极小值。

 

 

查看答案和解析>>

同步练习册答案