已知函数其中为自然对数的底数
(1)当时,求曲线在处的切线方程;
(2)若函数为单调函数,求实数的取值范围;
(3)若时,求函数的极小值。
科目:高中数学 来源: 题型:
a2 | x |
查看答案和解析>>
科目:高中数学 来源: 题型:
lnx+k | ex |
查看答案和解析>>
科目:高中数学 来源: 题型:
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数),根据你的数学知识,推断与间的隔离直线方程为 .
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(山东卷解析版) 题型:解答题
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中为的导函数.证明:对任意.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省成都市模拟考试理科数学试卷(解析版) 题型:解答题
已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.
【解析】第一问中,当时,,.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵,,
∴原不等式等价于:,
即, 亦即
分离参数的思想求解参数的范围
解:(Ⅰ)当时,,.
当在上变化时,,的变化情况如下表:
|
- |
+ |
|
||
1/e |
∴时,,.
(Ⅱ)∵,,
∴原不等式等价于:,
即, 亦即.
∴对于任意的,原不等式恒成立,等价于对恒成立,
∵对于任意的时, (当且仅当时取等号).
∴只需,即,解之得或.
因此,的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com