精英家教网 > 高中数学 > 题目详情
20.已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).
(1)若l与圆相切,求l的方程;
(2)若l与圆相交于P,Q两点,线段PQ的中点为M,又l与x+2y+2=0的交点为N,判断|AM|•|AN|是否为定值,若是,则求出定值;若不是,请说明理由.

分析 (1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;
(2)分别联立相应方程,求得M,N的坐标,再求|AM|•|AN|.

解答 解:(1)①当直线斜率存在时,设直线的斜率为k,则直线方程为:y-0=k(x-1),
即kx-y-k=0.因为直线与圆相切,所以$d=\frac{{|{3k-4-k}|}}{{\sqrt{{k^2}+1}}}=2$,解得$k=\frac{3}{4}$….3
所以直线方程是:3x-4y-3=0.
②当直线斜率不存在时,直线为x=1,满足题意.
综上可知:直线的方程是3x-4y-3=0或x=1…..6
(2)因为直线与圆相交,所以斜率存在,设斜率为k,则直线l:y=k(x-1)
联立$\left\{\begin{array}{l}y=k({x-1})\\ x+2y+2=0\end{array}\right.$得$\left\{\begin{array}{l}x=\frac{2k-2}{1+2k}\\ y=\frac{-3k}{1+2k}\end{array}\right.$所以$N({\frac{2k-2}{1+2k},\frac{-3k}{1+2k}})$…8
因为M是PQ的中点,所以CM⊥PQ.设直线CM的方程:$y-4=-\frac{1}{k}({x-3})$
联立$\left\{\begin{array}{l}y-4=-\frac{1}{k}({x-3})\\ y=k({x-1})\end{array}\right.$得$M({\frac{{{k^2}+4k+3}}{{{k^2}+1}},\frac{{4{k^2}+2k}}{{{k^2}+1}}})$.…10
所以$\overrightarrow{AM}=({\frac{4k+2}{{{k^2}+1}},\frac{{4{k^2}+2k}}{{{k^2}+1}}}),\overrightarrow{AN}=({\frac{-3}{1+2k},\frac{-3k}{1+2k}})$
所以$\overrightarrow{AM}•\overrightarrow{AN}=-6$,因为$\overrightarrow{AM}•\overrightarrow{AN}=-|{AM}|•|{AN}|$$|{AM}|•|{AN}|=-\overrightarrow{AM}•\overrightarrow{AN}=6$….12

点评 本题主要考查圆的标准方程,简单几何性质,直线与圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知:
命题p:若函数f(x)=x2+|x-a|是偶函数,则a=0.
命题q:?m∈(0,+∞),关于x的方程mx2-2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中为真命题的是(  )
A.②③B.②④C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}、{bn}满足a1=b1=8,a2=b2=6,a3=b3=5,且{an+1-an}是等差数列,{bn+1-bn}是等比数列.
(1)分别求出数列{an},{bn}的通项公式;
(2)求数列{an}中的最小项及最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a2=3,且2Sn=n(an+1),n∈N*
(1)求{an}的通项公式;
(2)数列{bn}满足bn=pn-an,且{bn}的前n项和为Tn,若对任意n∈N*,都有Tn≤T6,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|a-2<x<a+2},B={x|x2-4x-5<0},若A∩B=A,则实数a的取值范围为(  )
A.[1,3]B.(1,3)C.[-3,-1]D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;   
(2)记数列$\{\frac{n}{a_n}\}$的前n项和Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值,则以下四个值中为定值的编号是①②④.
①点P到平面QEF的距离;
②三棱锥P-QEF的体积;
③直线PQ与平面PEF所成的角;
④二面角P-EF-Q的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )  
A.12πB.4$\sqrt{3}π$C.12$\sqrt{3}π$D.$\frac{4}{3}$$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={1,2,3,4},B={2,4,5},则A∩B=(  )
A.{2}B.{2,4}C.{2,4,5}D.{1,2,3,4,5}

查看答案和解析>>

同步练习册答案