精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ﹣k( +lnx)(k为常数,e=2.71828…是自然对数的底数).
(1)当k≤0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

【答案】
(1)解: f(x)的定义域为(0,+∞),

∴f′(x)= ﹣k(

= (x>0),

当k≤0时,kx≤0,

∴ex﹣kx>0,

令f′(x)=0,则x=2,

∴当0<x<2时,f′(x)<0,f(x)单调递减;

当x>2时,f′(x)>0,f(x)单调递增,

∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).


(2)解:由(1)知,k≤0时,函数f(x)在(0,2)内单调递减,

故f(x)在(0,2)内不存在极值点;

当k>0时,设函数g(x)=ex﹣kx,x∈(0,+∞).

∵g′(x)=ex﹣k=ex﹣elnk

当0<k≤1时,

当x∈(0,2)时,g′(x)=ex﹣k>0,y=g(x)单调递增,

故f(x)在(0,2)内不存在两个极值点;

当k>1时,

得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,

x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,

∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)

函数f(x)在(0,2)内存在两个极值点

当且仅当

解得:e

综上所述,

函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,


【解析】(1)求出导函数,根据导函数的正负性,求出函数的单调区间;(2)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的极值(极值反映的是函数在某一点附近的大小情况)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地拟在一个U形水面PABQ(∠A=B=90°)上修一条堤坝(EAP上,NBQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点EN2条分隔线MEMN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=aEM=BM,∠MEN=90°,设所拉分隔线总长度为l

1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;

2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为 ,在D上的概率为 ;对落点在B上的来球,小明回球的落点在C上的概率为 ,在D上的概率为 .假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:

(1)小明两次回球的落点中恰有一次的落点在乙上的概率;
(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆 ,且).

(1)设为坐标轴上的点,满足:过点P分别作圆与圆的一条切线,切点分别为,使得,试求出所有满足条件的点的坐标;

(2)若斜率为正数的直线平分圆,求证:直线与圆总相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,, 平面,Q是AD的中点,M是棱PC上的点,.

(1)求证:平面

(2)若平面QMB与平面PDC所成的锐二面角的大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是(
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是同一平面上不共线的四点,若存在一组正实数,使得,则三个角( )

A. 都是钝角B. 至少有两个钝角

C. 恰有两个钝角D. 至多有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若关于的方程有实数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案