【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是( )
A.[﹣5,﹣3]
B.[﹣6,﹣
]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
【答案】C
【解析】解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;
当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥
,
令f(x)=
,则f′(x)=
=﹣
(*),
当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,
f(x)max=f(1)=﹣6,∴a≥﹣6;
当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤
,
由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,
f(x)min=f(﹣1)=﹣2,∴a≤﹣2;
综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].
故选:C.
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0.
(1)若直线l与圆C没有公共点,求m的取值范围;
(2)若直线l与圆C相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆
的右焦点
作
轴的垂线,与椭圆
在第一象限内交于点
,过
作直线
的垂线,垂足为
,
.
(1)求椭圆
的方程;
(2)设
为圆
上任意一点,过点
作椭圆
的两条切线
,设
分别交圆
于点
,证明:
为圆
的直径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=
﹣k(
+lnx)(k为常数,e=2.71828…是自然对数的底数).
(1)当k≤0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知
=2,cosB=
,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com