【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知
=2,cosB=
,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.
【答案】
(1)解:∵
=2,cosB=
,
∴cacosB=2,即ac=6①,
∵b=3,
∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,
∴a2+c2=13②,
联立①②得:a=3,c=2;
(2)解:在△ABC中,sinB=
=
=
,
由正弦定理
=
得:sinC=
sinB=
×
=
,
∵a=b>c,∴C为锐角,
∴cosC=
=
=
,
则cos(B﹣C)=cosBcosC+sinBsinC=
×
+
×
= ![]()
【解析】(1)利用平面向量的数量积运算法则化简
=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联立即可求出ac的值;(2)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.
【考点精析】本题主要考查了两角和与差的余弦公式和余弦定理的定义的相关知识点,需要掌握两角和与差的余弦公式:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
A.f(x)= ![]()
B.f(x)=x3
C.f(x)=(
)x
D.f(x)=3x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为
,在D上的概率为
;对落点在B上的来球,小明回球的落点在C上的概率为
,在D上的概率为
.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求: ![]()
(1)小明两次回球的落点中恰有一次的落点在乙上的概率;
(2)两次回球结束后,小明得分之和ξ的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为直角梯形,
,
, 平面
,Q是AD的中点,M是棱PC上的点,
,
,
.
![]()
(1)求证:平面
;
(2)若平面QMB与平面PDC所成的锐二面角的大小为
,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是( )
A.[﹣5,﹣3]
B.[﹣6,﹣
]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名大学生参加学校组织的“国学达人”挑战赛, 每人均有两轮答题机会,当且仅当第一轮不过关时进行第二轮答题.根据平时经验,甲、乙、丙三名大学生每轮过关的概率分别为
,且三名大学生每轮过关与否互不影响.
(1)求甲、乙、丙三名大学生都不过关的概率;
(2)记
为甲、乙、丙三名大学生中过关的人数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
、
、
是同一平面上不共线的四点,若存在一组正实数
、
、
,使得
,则三个角
、
、
( )
A. 都是钝角B. 至少有两个钝角
C. 恰有两个钝角D. 至多有两个钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )
表1
成绩 | 不及格 | 及格 | 总计 |
男 | 6 | 14 | 20 |
女 | 10 | 22 | 32 |
总计 | 16 | 36 | 52 |
表2
视力 | 好 | 差 | 总计 |
男 | 4 | 16 | 20 |
女 | 12 | 20 | 32 |
总计 | 16 | 36 | 52 |
表3
智商 | 偏高 | 正常 | 总计 |
男 | 8 | 12 | 20 |
女 | 8 | 24 | 32 |
总计 | 16 | 36 | 52 |
表4
阅读量 | 丰富 | 不丰富 | 总计 |
男 | 14 | 6 | 20 |
女 | 2 | 30 | 32 |
总计 | 16 | 36 | 52 |
A.成绩
B.视力
C.智商
D.阅读量
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com