精英家教网 > 高中数学 > 题目详情

【题目】已知圆Cx2+y2+x-6y+m=0与直线lx+2y-3=0

1)若直线l与圆C没有公共点,求m的取值范围;

2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

【答案】12m3

【解析】

(1)将圆的方程配方,

2(y3)2

故有0,解得m.

将直线l的方程与圆C的方程组成方程组,得

消去y,得x22xm0

整理,得5x210x4m270

直线l与圆C没有公共点,方程无解,故有Δ1024×5(4m27)0,解得m8.∴m的取值范围是.

(2)P(x1y1)Q(x2y2)

OPOQ,得0,即x1x2y1y20

及根与系数的关系,得

x1x2=-2x1·x2

PQ在直线x2y30上,

y1·y2·[93(x1x2)x1·x2]

代入上式,得y1·y2

③④代入x1·x2y1·y20,解得m3.

代入方程检验得Δ0成立,m3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的偶函数满足,当时,,设函数,则的图象所有交点的横坐标之和为( ).

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,已知处有相同的切线.

(1)求 的解析式;

(2)求上的最小值;

(3)若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟在一个U形水面PABQ(∠A=B=90°)上修一条堤坝(EAP上,NBQ上),围出一个封闭区域EABN,用以种植水生植物.为了美观起见,决定从AB上点M处分别向点EN2条分隔线MEMN,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知AB=aEM=BM,∠MEN=90°,设所拉分隔线总长度为l

1)设∠AME=2θ,求用θ表示的l函数表达式,并写出定义域;

2)求l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三个内角A,B,C所对的边分别为a,b,c.已知sin
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(
A.f(x)=
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点(为自然对数的底数).

(Ⅰ)求实数的取值范围;

(Ⅱ)求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是(
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]

查看答案和解析>>

同步练习册答案