精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知函数f(x)=ex-ln(x+1)
(I)求函数f(x)的单调区间;
(II)证明:e+e
1
2
+e
1
3
+…+e
1
n
≥ln(n+1)(n∈N*,e为常数)
分析:(I)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.
(II)由(I)知当x=0时,f(x)取得最小值,即f(x)≥1,即ex-ln(x+1)≥1,即ex≥ln(x+1)+1,取x=
1
n
,则e
1
n
≥ln(
1
n
+1)+1=ln(n+1)-lnn+1
,再分别令n=1,2,3,…,n得到n个不等式,相加即得.
解答:解:x>-1,f′(x)=ex-
1
x+1

(I)由于f′(x)=ex-
1
x+1
在(-1,+∞)上是增函数,且f′(0)=0,
∴当x∈(0,+∞)时,f′(x)>0,当x∈(-1,0)时,f′(x)<0,
故函数f(x)的单调增区间(0,+∞),函数f(x)的单调减区间(-1,0).
(II)由(I)知当x=0时,f(x)取得最小值,即f(x)≥1,
∴ex-ln(x+1)≥1,即ex≥ln(x+1)+1,
取x=
1
n
,则e
1
n
≥ln(
1
n
+1)+1=ln(n+1)-lnn+1

于是e≥ln2-ln1+1,
e
1
2
≥ln3-ln2+1,
e
1
3
≥ln4-ln3+1,

e
1
n
≥ln(n+1)-lnn+1.
相加得,e+e
1
2
+e
1
3
+…+e
1
n
≥ln(n+1)(n∈N*,e为常数)
,得证.
点评:本题考查函数的单调区间及极值的求法和不等式的证明,具体涉及到导数的性质、函数增减区间的判断、极值的计算和不等式性质的应用.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案