精英家教网 > 高中数学 > 题目详情
19.不等式x2+ax+6≤0的解集为{x|2≤x≤3},则实数a的值为(  )
A.5B.-5C.6D.-6

分析 由已知得2和5是方程x2+ax+6=0的两个根,由此能求出实数a的值.

解答 解:∵不等式x2+ax+6≤0的解集为{x|2≤x≤3},
∴2和3是方程x2+ax+6=0的两个根,
∴-a=2+3=5,
∴a=-5,
故选:B

点评 本题考查实数的值的求法,解题时要认真审题,一元二次不等式的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若直线ax+by+1=0(a、b>1)过圆x2+y2+8x+2y+1=0的圆心,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列根式、分数指数幂的互化中,正确的是(  )
A.-$\sqrt{x}$=(-x)${\;}^{\frac{1}{2}}$B.x${\;}^{-\frac{1}{3}}$=-$\root{3}{x}$
C.($\frac{x}{y}$)${\;}^{-\frac{3}{4}}$=$\root{4}{(\frac{y}{x})^{3}}$(x,y≠0)D.$\root{6}{{y}^{2}}$=y${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=|cosx|sinx,给出下列五个说法:
①f($\frac{82}{3}$π)=-$\frac{{\sqrt{3}}}{4}$;
②若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z);
③f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}}$]上单调递增;
④函数f(x)的周期为π.
⑤f(x)的图象关于点($\frac{π}{2}$,0)成中心对称.
其中正确说法的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x|x>1},B={x|x≤2},则A∩B=(  )
A.{x|1<x<2}B.{x|x>1或x≤2}C.{x|1<x≤2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=x2-2x+3的值域是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中,
①对于命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,均有x2+x-1>0;
②p是q的必要不充分条件,则¬p是¬q的充分不必要条件;
③命题“若sinx≠siny,则x≠y”为真命题;
④lgx>lgy,是x>y的充要条件.
所有正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+2bx,g(x)=|x-1|,若对任意x1,x2∈[0,2],当x1<x2时都有f(x1)-f(x2)<g(x1)-g(x2),则实数b的最小值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,离心率为$\frac{\sqrt{3}}{3}$,点P在椭圆C上,且点P在x轴上的正投影恰为F1,在y轴上的正投影为点(0,$\frac{2\sqrt{3}}{3}$).
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C交于A,B两点,过点P且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案