精英家教网 > 高中数学 > 题目详情
(1)已知集合A={y|y=log2x,x≥1},B={y|y=(
12
x,x≥0},求A∩B,A∪B;
(2)已知A={x|a≤x≤a+3},B={x|x2+5x-6>0}.若A∩B=∅,求实数a的取值范围.
分析:(1)求出集合A与B中函数的值域,确定出A与B,求出A与B的交集及并集即可;
(2)求出集合B中不等式的解集,根据A,以及A与B的交集为空集列出关于a的不等式,求出不等式的解集即可确定出a的范围.
解答:解:(1)由集合A中的y=log2x,x≥1,得到y≥0,即A=[0,+∞);
由集合B中的y=(
1
2
x,x≥0,得到0<y≤1,即B=(0,1],
则A∩B=(0,1],A∪B=[0,+∞);
(2)由集合B中的不等式解得:x>1或x<-6,
∵A={x|a≤x≤a+3},A∩B=∅,
a≥-6
a+3≤1

解得:-6≤a≤-2.
点评:此题考查了交集及其运算,以及并集及其运算,熟练掌握交、并集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、与集合交汇.例1:已知集合A={x|x2-y2=1},B={y|x2=4y},则(CRA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
①函数f(x)=
a2-x2
|x+b|-b
(b>a>0)
为奇函数;
②函数y=
1-x
的值域为{y|0≤y≤1};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为{-1,
1
3
};
④集合A={非负实数},B={实数},对应法则f:“求平方根”,则f是A到B的映射.
其中正确命题的序号为:

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|x2=1},B={x|ax=1},若A∪B=A,求实数a的值.
(2)已知全集U={1,2,3,4,5,6,7,8,9},A⊆U,B⊆U,且(?UA)∩B={1,9},A∩B={2},(?UA)∩(?UB)={4,6,8},求集合A、B.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|x2-5x+6=0},B={x|mx+1=0},且A∪B=A,求实数m的值组成的集合.
(2)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足
x2-x-6≤0
x2+2x-8>0
,若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知集合A={x|3≤x<7},B={x|2<x<10},全集为实数集R.求 (?RA)∩B;
(2)计算:2(lg
2
)2+lg
2
•lg5+
(lg
2
)
2
-lg2+1

查看答案和解析>>

同步练习册答案