精英家教网 > 高中数学 > 题目详情
函数f(x)=loga(x-1)(a>0且a≠1)的图象必经过定点P,则点P的坐标为
 
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:令x-1=1,求得x=2,f(x)=0,从而求得点P的坐标.
解答: 解:根据函数y=logax的图象经过点(1,0),
对于函数f(x)=loga(x-1),令x-1=1,求得x=2,且f(2)=0,
可得点P的坐标为(2,0),
故答案为:(2,0).
点评:本题主要考查对数函数的单调性和特殊点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差都等于1,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)有两个顶点在直线x+2y-2=0上
(1)求椭圆C的方程;
(2)当直线l:y=x+m与椭圆C相交时,求m的取值范围;
(3)设直线l:y=x+m与椭圆C交于A,B两点,O为坐标原点,若以为AB直径的圆过原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
患病 未患病 总计
没服用药 20 30 50
服用药 x y 50
总计 M N 100
设从没服用药的动物中任取两只,未患病数为x;从服用药物的动物中任取两只,未患病数为y,工作人员曾计算过P(x=0)=
38
9
•p(y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够以99%的把握认为药物有效吗?参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d;
    ①当K2≥3.841时有95%的把握认为ξ、η有关联;
    ②当K2≥6.635时有99%的把握认为ξ、η有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:

由曲线y=x2+2与y=3x所围成的平面图形的面积
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个集合A={x|
mx-1
x
<0}
B={x|log
1
2
x>1}
;命题p:实数m为小于6的正整数,命题q:A是B成立的必要不充分条件,若命题p∧q是真命题,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示程序框图,若输入x=4,则输出y=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为
 

(2)若a,b,c是△ABC的三边长,则下列结论正确的是
 
(写出所有正确结论的序号).
①对于区间(-∞,1)内的任意x,总有f(x)>0成立;
②存在实数x,使得ax,bx,cx不能同时成为任意一个三角形的三条边长;
③若
CA
CB
<0,则存在实数x∈(1,2),使f(x)=0.(提示:
AB
=
CB
-
CA

查看答案和解析>>

科目:高中数学 来源: 题型:

程序框图如图:如果上述程序运行的结果为S=132,那么判断框中应填入
 

查看答案和解析>>

同步练习册答案