精英家教网 > 高中数学 > 题目详情
15.某地植被面积 x(公顷)与当地气温下降的度数y(°C)之间有如下的对应数据:
x(公顷)2040506080
y(°C)34445
(1)请用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少℃?
(附:回归方程系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

分析 (1)根据表中数据,计算$\overline{x}$、$\overline{y}$,求出回归方程的系数$\stackrel{∧}{b}$、$\stackrel{∧}{a}$,写出线性回归方程;
(2)利用回归直线方程求出x=200时$\stackrel{∧}{y}$的值即可.

解答 解:(1)根据表中数据,计算
$\overline{x}$=$\frac{1}{5}$×(20+40+50+60+80)=50,
$\overline{y}$=$\frac{1}{5}$×(3+4+4+4+5)=4,
$\sum_{i=1}^{5}$xiyi=20×3+40×4+50×4+60×4+80×5=1060,
$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=202+402+502+602+802=14500;
则回归方程系数为
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{1060-5×50×4}{14500-5{×50}^{2}}$=0.03,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=4-0.03×50=2.5,
所以y关于x的线性回归方程为$\stackrel{∧}{y}$=0.03x+2.5;
(2)由(1)得:当x=200时,$\stackrel{∧}{y}$=0.03×200+2.5=8.5,
即如果植被面积为200公顷,那么下降的气温大约是8.5℃.

点评 本题考查了线性回归方程的求法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知tanα=$\sqrt{2}$,cos(α+β)=-$\frac{\sqrt{3}}{3}$,且α,β∈(0,$\frac{π}{2}$),则tanβ=2$\sqrt{2}$;2α+β=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.球O与棱长为a的正方体ABCD-A1B1C1D1的各个面均相切,如图,用平平行于底面的平面截去长方体A2B2C2D2-A1B1C1D1,得到截面A2B2C2D2,且A2A=$\frac{3}{4}$a,现随机向截面A2B2C2D2上撒一粒黄豆,则黄豆落在截面中的圆内的概率为(  )
A.$\frac{3}{4}$B.$\frac{3π}{16}$C.$\frac{π}{4}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图中程序执行后输出的结果是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,某几何体的正视图、侧视图均为等腰三角形,俯视图是正方形,则该几何体的体积是(  )
A.2B.4C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{8\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在正方体ABCD-A'B'C'D'中,E,F分别是AB',BC'的中点.
(Ⅰ)若M为BB'的中点,证明:平面EMF∥平面ABCD;
(II)在(1)的条件下,当正方体的棱长为2时,求三棱锥M-EBF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设α是第三象限角,化简:$cosα•\sqrt{1+{{tan}^2}α}$=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某教育考试机构对一次数学考试成绩(满分150分)利用简单随机抽样方法进行抽样调查,分数与人数统计如表:
 分数段[0~80)[80~100)[100~120)[120~140)[140~150]
 人数 300 130 180 220 170
(1)若本次考试成绩的平均分为120,求任取一名同学的成绩不低于平均分的概率(用频率估计概率);
(2)在样本成绩中,女生的成绩占15%,在分数段[140,150]的样本成绩中,女生的成绩占30%,估计在男生的考试成绩中,分数在[140,150]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式(x-a)(x-a2)<0.
(1)当a=2时,求不等式的解集;
(2)当a∈R,a≠0且a≠1时,求不等式的解集.

查看答案和解析>>

同步练习册答案