精英家教网 > 高中数学 > 题目详情
7.设α是第三象限角,化简:$cosα•\sqrt{1+{{tan}^2}α}$=(  )
A.1B.0C.-1D.2

分析 原式利用单项式乘以多项式法则计算,再利用同角三角函数间基本关系化简,结合角的范围即可得到结果.

解答 解:∵α是第三象限角,可得:cosα<0,
∴$cosα•\sqrt{1+{{tan}^2}α}$=-$\sqrt{co{s}^{2}α+co{s}^{2}αta{n}^{2}α}$,
∵cos2α+cos2αtan2α=cos2α+cos2α•$\frac{si{n}^{2}α}{co{s}^{2}α}$=cos2α+sin2α=1.
∴$cosα•\sqrt{1+{{tan}^2}α}$=-1.
故选:C.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在直角坐标系内,已知A(3,2)是圆C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x-y+1=0和x+y-7=0,若圆C上存在点P,使∠MPN=90°,其中M,N的坐标分别为(-m,0),(m,0),则实数m的取值集合为[3,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知曲线C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.
(Ⅰ)写出直线l的直角坐标方程和曲线C的参数方程;
(Ⅱ)在曲线C上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地植被面积 x(公顷)与当地气温下降的度数y(°C)之间有如下的对应数据:
x(公顷)2040506080
y(°C)34445
(1)请用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少℃?
(附:回归方程系数公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(Ⅰ)求证:AE⊥PC;
(II)若直线AC与平面PCD所成的角为30°,求$\frac{CD}{AD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x,x≥1}\\{1-3x,x<1}\end{array}}\right.$,若f[f(x0)]=-2,则x0的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设向量$\overrightarrow a=(x,4)$,$\overrightarrow b=(7,-1)$,已知$|{\overrightarrow a{+}\overrightarrow b}|{=}|{\overrightarrow a}|$.
(I)求实数x的值;
(II)求$\overrightarrow a$与$\overrightarrow b$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线2x+y-2=0在x轴上的截距为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等差数列,a3=5,a7=13,数列{bn}前n项和为Sn,且满足Sn=2bn-1(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案