【题目】设函数
,曲线
在点
处的切线斜率为
.
(1)证明:
有且只有一个零点.
(2)当
时,
恒成立,求整数
的最小值.
科目:高中数学 来源: 题型:
【题目】如图,点
分别为椭圆
的左右顶点和右焦点,过点
的直线交椭圆
于点
.
![]()
(1)若
,点
与椭圆
左准线的距离为
,求椭圆
的方程;
(2)已知直线
的斜率是直线
斜率的
倍.
①求椭圆
的离心率;
②若椭圆
的焦距为
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一胸针图样由等腰三角形
及圆心
在中轴线上的圆弧
构成,已知
,
.为了增加胸针的美观程度,设计师准备焊接三条金丝线
且
长度不小于
长度,设
.
![]()
(1)试求出金丝线的总长度
,并求出
的取值范围;
(2)当
为何值时,金丝线的总长度
最小,并求出
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们知道,目前最常见的骰子是六面骰,它是一颗正立方体,上面分别有一到六个洞(或数字),其相对两面之数字和必为七.显然,掷一次六面骰,只能产生六个数之一(正上面).现欲要求你设计一个“十进制骰”,使其掷一次能产生0~9这十个数之一,而且每个数字产生的可能性一样.请问:你能设计出这样的骰子吗?若能,请写出你的设计方案;若不能,写出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.
![]()
![]()
(1)求证:BD⊥AE
(2)若点E为PC的中点,求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中医药研究所研制出一种新型抗癌药物,服用后需要检验血液是否为阳性,现有
份血液样本每个样本取到的可能性均等,有以下两种检验方式:(1)逐份检验,则需要检验
次;(2)混合检验,将其中
份血液样本分别取样混合在一起检验,若结果为阴性,则这
份的血液全为阴性,因而这
份血液样本只需检验一次就够了;若检验结果为阳性,为了明确这
份血液究竟哪份为阳性,就需要对这
份再逐份检验,此时这
份血液的检验次数总共为
次假设在接受检验的血液样本中,每份样本的检验结果总阳性还是阴性都是相互独立的,且每份样本是阳性的概率为
.
(1)假设有6份血液样本,其中只有两份样本为阳性,若采取遂份检验的方式,求恰好经过两次检验就能把阳性样本全部检验出来的概率.
(2)现取其中的
份血液样本,记采用逐份检验的方式,样本需要检验的次数为
;采用混合检验的方式,样本简要检验的总次数为
;
(ⅰ)若
,试运用概率与统计的知识,求
关于
的函数关系
,
(ⅱ)若
,采用混合检验的方式需要检验的总次数的期望比逐份检验的总次数的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春节期间,武汉市爆发了新型冠状病毒肺炎疫情,在党中央的坚强领导下,全国人民团结一心,众志成城,共同抗击疫情.某中学寒假开学后,为了普及传染病知识,增强学生的防范意识,提高自身保护能力,校委会在全校学生范围内,组织了一次传染病及个人卫生相关知识有奖竞赛(满分100分),竞赛奖励规则如下,得分在
内的学生获三等奖,得分在
内的学生获二等奖,得分在
内的学生获一等奖,其他学生不得奖.教务处为了解学生对相关知识的掌握情况,随机抽取了100名学生的竞赛成绩,并以此为样本绘制了如下样本频率分布直方图.
![]()
(1)现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;
(2)若该校所有参赛学生的成绩
近似服从正态分布
,其中
为样本平均数的估计值,利用所得正态分布模型解决以下问题:
(i)若该校共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到整数);
(ii)若从所有参赛学生中(参赛学生数大于10000)随机抽取3名学生进行座谈,设其中竞赛成绩在64分以上的学生数为
,求随机变量
的分布列和均值.
附:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com