精英家教网 > 高中数学 > 题目详情

【题目】我们知道,目前最常见的骰子是六面骰,它是一颗正立方体,上面分别有一到六个洞(或数字),其相对两面之数字和必为七.显然,掷一次六面骰,只能产生六个数之一(正上面).现欲要求你设计一个十进制骰,使其掷一次能产生0~9这十个数之一,而且每个数字产生的可能性一样.请问:你能设计出这样的骰子吗?若能,请写出你的设计方案;若不能,写出理由.

【答案】能,方案见解析

【解析】

因为不存在正十面体,所以直接产生十进制骰是办不到的.

但要实现十进制骰的要求,这样的骰子也是能设计的.

即把骰子做成正二十面体,使其相对两面标同一个数字,这样0~9这十个数字就均匀分布在骰子上,当掷一次骰子时,最上面出现的数字必然是0~9这十个数字之一,

显然,每个数字出现的可能性一样故个位骰即为二十面骰”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的顶点,且成等差数列.

1)求的顶点的轨迹方程;

2)直线与顶点的轨迹交于两点,当线段的中点落在直线上时,试问:线段的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,曲线C的极坐标方程为

(Ⅰ)求直线l和曲线C的直角坐标方程;

(Ⅱ)点M为曲线C上一点,求M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“函数”.

1)判断函数是否为“函数”,并说明理由;

2)若函数是“函数”,求实数的取值范围;

3)已知,求证:当,且时,函数是“函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线处的切线方程;

2)对任意恒成立,求实数的取值范围;

3)当时,试求方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线斜率为.

1)证明:有且只有一个零点.

2)当时,恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,求a的值;

2)在(1)的条件下,若,证明:

3)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

1)证明:平面

2)若的中点,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若双曲线的实轴长为6,焦距为10,右焦点为,则下列结论正确的是(

A.的渐近线上的点到距离的最小值为4B.的离心率为

C.上的点到距离的最小值为2D.的最短的弦长为

查看答案和解析>>

同步练习册答案