| A. | 8 | B. | 2 | C. | 10 | D. | 6 |
分析 0<x<2,f(x)=$\frac{1}{x}$+$\frac{9}{2-x}$,利用导数研究函数的单调性极值与最值即可得出.
解答 解:∵0<x<2,f(x)=$\frac{1}{x}$+$\frac{9}{2-x}$,
f′(x)=-$\frac{1}{{x}^{2}}$+$\frac{0-9×(-1)}{(2-x)^{2}}$=$\frac{9{x}^{2}-(2-x)^{2}}{{x}^{2}(2-x)^{2}}$=$\frac{8(x+1)(x-\frac{1}{2})}{(2x-{x}^{2})^{2}}$.
∴当x=$\frac{1}{2}$时,f(x)取得最小值$f(\frac{1}{2})$=2+6=8.
故选:A.
点评 本题考查了利用导数研究函数的单调性极值与最值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x-4y-11=0 | B. | 4x-y+11=0 | C. | x-2y+7=0 | D. | x-2y-7=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {-3} | C. | {-3,2} | D. | {-2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\sqrt{2}$)>f(-$\sqrt{2}$) | B. | f(-2)>f(3) | C. | f(3)<f(4) | D. | f($\sqrt{2}$)>f($\sqrt{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com