| A. | 锐角 | B. | 直角 | C. | 等腰 | D. | 等腰或直角 |
分析 已知等式利用同角三角函数间基本关系切化弦,整理后再利用二倍角的余弦公式变形得到sin2A=sin2B,进而得到A=B,或2A+2B=π,即可确定出三角形的形状.
解答 解:在△ABC中,tanAsin2B=tanBsin2A,
化简得:$\frac{sinA}{cosA}$•sin2B=$\frac{sinB}{cosB}$•sin2A,
整理得:sinBcosB=sinAcosA,
化简得:sin2A=sin2B,
∴2A=2B,或2A+2B=π,
即A=B,或A+B=$\frac{π}{2}$,
则△ABC为等腰三角形或直角三角形.
故选:D.
点评 此题考查了二倍角的正弦、余弦函数公式,以及同角三角函数间基本关系的运用,熟练掌握公式是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{2}^{5}}$ | B. | $\frac{1}{{2}^{4}}$ | C. | -$\frac{1}{{2}^{5}}$ | D. | -$\frac{1}{{2}^{4}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com