精英家教网 > 高中数学 > 题目详情
4.在△ABC中,tanAsin2B=tanBsin2A,则△ABC一定是(  )三角形.
A.锐角B.直角C.等腰D.等腰或直角

分析 已知等式利用同角三角函数间基本关系切化弦,整理后再利用二倍角的余弦公式变形得到sin2A=sin2B,进而得到A=B,或2A+2B=π,即可确定出三角形的形状.

解答 解:在△ABC中,tanAsin2B=tanBsin2A,
化简得:$\frac{sinA}{cosA}$•sin2B=$\frac{sinB}{cosB}$•sin2A,
整理得:sinBcosB=sinAcosA,
化简得:sin2A=sin2B,
∴2A=2B,或2A+2B=π,
即A=B,或A+B=$\frac{π}{2}$,
则△ABC为等腰三角形或直角三角形.
故选:D.

点评 此题考查了二倍角的正弦、余弦函数公式,以及同角三角函数间基本关系的运用,熟练掌握公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.求cos$\frac{π}{11}$cos$\frac{2π}{11}$cos$\frac{3π}{11}$cos$\frac{4π}{11}$cos$\frac{5π}{11}$=(  )
A.$\frac{1}{{2}^{5}}$B.$\frac{1}{{2}^{4}}$C.-$\frac{1}{{2}^{5}}$D.-$\frac{1}{{2}^{4}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+2y-1≥0}\\{x≤3}\end{array}\right.$,则z=(x+1)2+y2的最小值是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知0<x<2,则$\frac{1}{x}$+$\frac{9}{2-x}$的最小值为(  )
A.8B.2C.10D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在四棱锥P-ABCD中,PA⊥面ABCD,∠DAB=90°,AB平行于CD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:AB⊥面BEF;
(2)设PA=h,若二面角E-BD-C大于45°,求h的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A、B、C所对的边分别是a,b,c,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p:关于x的方程ax2+2x+1=0至少有一个负根,q:a≤1,则¬p是¬q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=ax-4+5(a>0,a≠1)的图象必经过定点(  )
A.(0,5)B.(4,5)C.(3,4)D.(4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}中,a6+a8=16,a4=1,则a10的值是(  )
A.15B.30C.31D.64

查看答案和解析>>

同步练习册答案