| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.
解答 解:作出不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+2y-1≥0}\\{x≤3}\end{array}\right.$对应的平面区域,
则z的几何意义为区域内点P到点D(-1,0)的距离平方的最小值,![]()
由图象可知,当DP垂直于直线x+2y-1=0时,
此时DP最小,|DP|=$\frac{|-1+0-1|}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{2}{\sqrt{5}}$,
则z=|DP|2=$\frac{4}{5}$,
故选:C.
点评 本题主要考查线性规划的应用以及点到直线的距离公式的应用,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,+∞) | B. | $({\root{3}{3},+∞})$ | C. | $({\root{3}{3},3})$ | D. | $({0,\root{3}{3}})∪({3,+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {-3} | C. | {-3,2} | D. | {-2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x2+2x,x∈(-1,+∞) | B. | f(x)=x2-1,x∈(-1,+∞) | ||
| C. | f(x)=x2+2x,x∈(-∞,-1) | D. | f(x)=x2-1,x∈(-∞,-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com