精英家教网 > 高中数学 > 题目详情
16.已知p:关于x的方程ax2+2x+1=0至少有一个负根,q:a≤1,则¬p是¬q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分也不必要条件

分析 关于x的方程ax2+2x+1=0至少有一个负实根,考虑一次或二次线两种情况,对这两种情况分别讨论,解不等式可得a的范围刚好是小于或等于1,应该是充要条件.

解答 解:对于p:关于x的方程ax2+2x+1=0至少有一个负实根,可分如下两种情况:
(1)当a=0时,方程是一个直线,可知有一个负实根
(2)当a≠0,当关于x的方程ax2+2x+1=0有实根,△≥0,解可得a≤1;
①当关于x的方程ax2+2x+1=0有一个负实根,有$\frac{1}{a}$<0,解可得a<0;
②当关于x的方程ax2+2x+1=0有二个负实根,有 $\left\{\begin{array}{l}{\frac{1}{a}>0}\\{-\frac{2}{a}<0}\end{array}\right.$,解可得a>0;,
即有a≠0且a≤1
综上可得,a≤1;
q与p的范围完全相同,
故¬p是¬q的充要条件,
故选:A.

点评 本题考查学生对一元二次方程的根的分布与系数的关系以及充分必要条件的判断,属于基础题.做题时应该注意对字母系数的讨论,避免当成二次直接用根的判别式而至错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=x3+ln(${\sqrt{{x^2}+1}$+x)且f(${\frac{{a-3{a^2}}}{{{a^3}-3}}}$)-ln(${\sqrt{2}$-1)<-1,则实数a的取值范围为(  )
A.(3,+∞)B.$({\root{3}{3},+∞})$C.$({\root{3}{3},3})$D.$({0,\root{3}{3}})∪({3,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.全集U=R,A⊆U,B⊆R,集合A={x∈N|1≤x≤10},集合B={x|x2+x-6=0},则图中阴影部分表示的集合为(  )
A.{2}B.{-3}C.{-3,2}D.{-2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,tanAsin2B=tanBsin2A,则△ABC一定是(  )三角形.
A.锐角B.直角C.等腰D.等腰或直角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=3,an+1=2an-1.
(1)假设bn=an-1,求{bn}的通项公式和前n项和Sn
(2)设${c_n}=\frac{{{2^{n+1}}}}{{{a_n}{a_{n+1}}}}$,求{cn}的前n项和Tn的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,a1=1,q=$\frac{1}{2}$,an=$\frac{1}{32}$,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,设$\frac{a}{c}$=$\sqrt{3$-1,$\frac{tanB}{tanC}$=$\frac{2a-c}{c}$,求角A,B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(2x-1)=4x-1,则f(x)=(  )
A.f(x)=x2+2x,x∈(-1,+∞)B.f(x)=x2-1,x∈(-1,+∞)
C.f(x)=x2+2x,x∈(-∞,-1)D.f(x)=x2-1,x∈(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\sqrt{2}$,则该三角形的形状是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

同步练习册答案