精英家教网 > 高中数学 > 题目详情
6.△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\sqrt{2}$,则该三角形的形状是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

分析 由已知可得acosA=bcosB,由余弦定理可得a2(b2+c2-a2)=b2(a2+c2-b2),又由已知可得b2=2a2,联立解得c2=3a2=a2+b2,利用勾股定理即可得解三角形的形状.

解答 解:∵$\frac{cosA}{cosB}$=$\frac{b}{a}$,可得:acosA=bcosB,
∴由余弦定理可得:a×$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=b×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,整理可得:a2(b2+c2-a2)=b2(a2+c2-b2),①
∵$\frac{b}{a}$=$\sqrt{2}$,可得:b2=2a2,②
∴由①②解得:c2=3a2=a2+b2
∴该三角形的形状是直角三角形.
故选:A.

点评 本题主要考查了余弦定理,勾股定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知p:关于x的方程ax2+2x+1=0至少有一个负根,q:a≤1,则¬p是¬q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(x+1),函数g(x)=loga(4-2x)(a>0,且a≠1).
(1)求函数y=f(x)-g(x)的定义域;
(2)求使函数y=f(x)-g(x)的值为正数的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}中,a6+a8=16,a4=1,则a10的值是(  )
A.15B.30C.31D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}的通项公式为an=-n+p,数列{bn}的通项公式为bn=2n-5,设cn=$\left\{\begin{array}{l}{{a}_{n},{a}_{n}≤{b}_{n}}\\{{b}_{n},{a}_{n}>{b}_{n}}\end{array}\right.$,若在数列{cn}中c8>cn(n∈N*,n≠8),则实数p的取值范围是(  )
A.(11,25)B.(12,16]C.(12,17)D.[16,17)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线C以原点O为中心,以坐标轴为对称轴,过(3,$2\sqrt{6}$)和(-2,-3)两点.
(1)求双曲线C的标准方程.
(2)斜率为1的直线l过双曲线C的右焦点,并且与双曲线交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数y=$\sqrt{(2m-1){x}^{2}+(m+1)x+m-4}$的定义域为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}满足a1=2,an+1=$\frac{{2}^{n+1}{a}_{n}}{(n+\frac{1}{2}){a}_{n}+{2}^{n}}$(n∈N+).
(1)设bn=$\frac{{2}^{n}}{{a}_{n}}$,求数列{bn}的通项公式bn
(2)设cn=$\frac{1}{n(n+1){a}_{n+1}}$,数列{cn}的前n项和为Sn,求出Sn并由此证明:$\frac{5}{16}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设直线系M:xcosθ+ysinθ=1,对于下列四个命题:
①不在直线系M中的点都落在面积为π的区域内
②直线系M中所有直线为一组平行线
③直线系M中所有直线均经过一个定点
④对于任意整数n(n≥3),存在正n边形,其所有边均在直线系M中的直线上
其中真命题的代号是①④(写出所有真命题的代号).

查看答案和解析>>

同步练习册答案