精英家教网 > 高中数学 > 题目详情
5.数列{an}满足a1=2,an+1=$\frac{{2}^{n+1}{a}_{n}}{(n+\frac{1}{2}){a}_{n}+{2}^{n}}$(n∈N+).
(1)设bn=$\frac{{2}^{n}}{{a}_{n}}$,求数列{bn}的通项公式bn
(2)设cn=$\frac{1}{n(n+1){a}_{n+1}}$,数列{cn}的前n项和为Sn,求出Sn并由此证明:$\frac{5}{16}$≤Sn<$\frac{1}{2}$.

分析 (1)根据已知条件中的数列{an}的递推公式,以及bn=$\frac{{2}^{n}}{{3}^{n}}$,可将其转化为数列{bn}的一个递推公式,利用“累加求和”方法即可得出.
(2)由(1)可求得数列{an}的通项公式,进而求得{cn}的通项公式,可将其转化为一个等比数列与一个可用裂项相消法求和的数列的形式,即可得证.

解答 解:(1)由an+1=$\frac{{2}^{n+1}{a}_{n}}{(n+\frac{1}{2}){a}_{n}+{2}^{n}}$(n∈N+),可得:$\frac{{a}_{n+1}}{{2}^{n+1}}$=$\frac{{a}_{n}}{(n+\frac{1}{2}){a}_{n}+{2}^{n}}$,
取倒数可得:$\frac{{2}^{n+1}}{{a}_{n+1}}$-$\frac{{2}^{n}}{{a}_{n}}$=n+$\frac{1}{2}$,又bn=$\frac{{2}^{n}}{{a}_{n}}$,
∴bn+1-bn=n+$\frac{1}{2}$.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=$(n-1+\frac{1}{2})$+$(n-2+\frac{1}{2})$+…+$(1+\frac{1}{2})$+1
=$\frac{(n-1)(n-1+1)}{2}$+$\frac{n-1}{2}$+1
=$\frac{{n}^{2}+1}{2}$.
∴bn=$\frac{{n}^{2}+1}{2}$.
(2)证明:由(1)可得:$\frac{{2}^{n}}{{a}_{n}}$=$\frac{{n}^{2}+1}{2}$,可得an=$\frac{{2}^{n+1}}{{n}^{2}+1}$.
cn=$\frac{1}{n(n+1){a}_{n+1}}$=$\frac{(n+1)^{2}+1}{n(n+1)•{2}^{n+2}}$=$\frac{1}{2}•\frac{{n}^{2}+n+n+2}{n(n+1)•{2}^{n+1}}$=$\frac{1}{2}[\frac{1}{{2}^{n+1}}+\frac{n+2}{n(n+1)•{2}^{n+1}}]$=$\frac{1}{2}[\frac{1}{{2}^{n+1}}+\frac{1}{n•{2}^{n}}-\frac{1}{(n+1)•{2}^{n+1}}]$,
∴数列{cn}的前n项和为Sn=$\frac{1}{2}×$$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$+$\frac{1}{2}[(\frac{1}{2}-\frac{1}{2×{2}^{2}})$+$(\frac{1}{2×{2}^{2}}-\frac{1}{3×{2}^{3}})$+…+$(\frac{1}{n•{2}^{n}}-\frac{1}{(n+1)•{2}^{n+1}})]$
=$\frac{1}{4}(1-\frac{1}{{2}^{n}})$+$\frac{1}{2}[\frac{1}{2}-\frac{1}{(n+1)•{2}^{n+1}}]$
=$\frac{1}{2}$-$\frac{1}{{2}^{n+2}}$-$\frac{1}{(n+1)•{2}^{n+2}}$$<\frac{1}{2}$.
∵cn>0,∴Sn≥S1=$\frac{1}{2}-\frac{1}{{2}^{3}}$-$\frac{1}{16}$=$\frac{5}{16}$.
∴$\frac{5}{16}$≤Sn<$\frac{1}{2}$.

点评 本题考查了等差数列与等比数列的通项公式及其求和公式、“裂项求和方法”、数列递推关系、数列的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若f(2x-1)=4x-1,则f(x)=(  )
A.f(x)=x2+2x,x∈(-1,+∞)B.f(x)=x2-1,x∈(-1,+∞)
C.f(x)=x2+2x,x∈(-∞,-1)D.f(x)=x2-1,x∈(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\sqrt{2}$,则该三角形的形状是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=1,a2=3,an+1=an+2an-1(n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+2x-1(x<0)与g(x)=x3-log2(x+a)+1的图象上存在关于原点对称的点,则实数a的取值范围为(  )
A.(-∞,2)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x-$\frac{1}{2}$x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax2-bx+lnx,a,b∈R.
(1)当a=b=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当b=2a+1时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a、b∈R,若M=$|\begin{array}{l}{-1}&{a}\\{b}&{3}\end{array}|$所对应的变换T把直线2x-y=3变换成自身,试求实数a、b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{(x-1)^{2},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$满足对任意的x1≠x2,都有[f(x1)-f(x2)](x1-x2)<0成立,则a的取值范围是(-∞,$\frac{3}{5}$].

查看答案和解析>>

同步练习册答案