分析 an+1=an+2an-1(n≥2),变形an+1-2an=-(an-2an-1),利用等比数列的通项公式可得:an+1-2an=(-1)n-1,变形为:an+1+$\frac{1}{3}$(-1)n=2[an+$\frac{1}{3}(-1)^{n-1}$],再利用等比数列的通项公式即可得出.
解答 解:∵an+1=an+2an-1(n≥2),
∴an+1-2an=-(an-2an-1),
∴数列{an+1-2an}是等比数列,首项为1,公比为-1.
∴an+1-2an=(-1)n-1,
∴an+1+$\frac{1}{3}$(-1)n=2[an+$\frac{1}{3}(-1)^{n-1}$],
∴数列{an+$\frac{1}{3}$(-1)n-1}为等比数列,公比为2,首项为$\frac{4}{3}$.
∴an+$\frac{1}{3}$(-1)n-1=$\frac{4}{3}$×2n-1=$\frac{{2}^{n+1}}{3}$.
∴an=$\frac{{2}^{n+1}+(-1)^{n}}{3}$.
点评 本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com