精英家教网 > 高中数学 > 题目详情
1.已知双曲线C以原点O为中心,以坐标轴为对称轴,过(3,$2\sqrt{6}$)和(-2,-3)两点.
(1)求双曲线C的标准方程.
(2)斜率为1的直线l过双曲线C的右焦点,并且与双曲线交于A、B两点,求△OAB的面积.

分析 (1)设双曲线方程为:$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{n}=1$(mn<0),将(3,$2\sqrt{6}$)和(-2,-3)两点代入双曲线方程即可求得m和n的值,求得双曲线C的标准方程;
(2)由(1)可知,求得焦点坐标,设直线AB的方程,代入双曲线方程,利用韦达定理求得x1+x2=2,x1•x2=-$\frac{7}{2}$,由弦长公式,点到直线的距离公式及三角形的面积公式即可求得△OAB的面积.

解答 解:设双曲线方程为:$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{n}=1$(mn<0),
∴$\left\{\begin{array}{l}{\frac{9}{m}-\frac{24}{n}=1}\\{\frac{4}{m}-\frac{9}{n}=1}\end{array}\right.$,解得:m=1,n=3,
双曲线C的标准方程${x}^{2}-\frac{{y}^{2}}{3}=1$;
(2)由题意可得:c2=a2+b2=4,c=2,右焦点F2(2,0),
设直线AB方程为:y=x-2,A(x1,y1),B(x2,y2
$\left\{\begin{array}{l}{y=x-2}\\{{x}^{2}-\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:2x2-4x-7=0,
由韦达定理可知:x1+x2=2,x1•x2=-$\frac{7}{2}$,
丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{4+14}$=6,
由O到直线AB的距离d=$\frac{丨0-0+2丨}{\sqrt{{1}^{2}+{1}^{2}}}$=$\sqrt{2}$,
△OAB的面积S=$\frac{1}{2}$•d•丨AB丨=3$\sqrt{2}$,
∴△OAB的面积3$\sqrt{2}$.

点评 本题考查双曲线的方程及性质,考查三角形的面积的求法,注意运用联立直线方程和双曲线的方程,运用韦达定理和弦长公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,a1=1,q=$\frac{1}{2}$,an=$\frac{1}{32}$,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若定义在R上的偶函数y=f(x)在(-∞,-1]上是增函数,则下列各式成立的是(  )
A.f($\sqrt{2}$)>f(-$\sqrt{2}$)B.f(-2)>f(3)C.f(3)<f(4)D.f($\sqrt{2}$)>f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}满足a1=3,an-an•an+1=1,An表示{an}前n项之积,则A2016的值为(  )
A.-$\frac{1}{2}$B.$\frac{2}{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{cosA}{cosB}$=$\frac{b}{a}$=$\sqrt{2}$,则该三角形的形状是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各式计算正确的个数是(  )
①(-7)•6$\overrightarrow a$=-42$\overrightarrow a$;②$\overrightarrow a$-2$\overrightarrow b$+2(${\overrightarrow a$+$\overrightarrow b}$)=3$\overrightarrow a$;③$\overrightarrow a$+$\overrightarrow b$-($\overrightarrow a$+$\overrightarrow b}$)=$\overrightarrow 0$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=1,a2=3,an+1=an+2an-1(n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x-$\frac{1}{2}$x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,且将全班25人的成绩记为AI(I=1,2,…,25)由右边的程序运行后,输出n=10.据此解答如下问题:

(Ⅰ)求茎叶图中破损处分数在[50,60),[70,80),[80,90)各区间段的频数;
(Ⅱ)利用频率分布直方图估计该班的数学测试成绩的众数,中位数分别是多少?

查看答案和解析>>

同步练习册答案