精英家教网 > 高中数学 > 题目详情
10.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x-$\frac{1}{2}$x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

分析 (1)利润函数G(x)=销售收入函数F(x)-成本函数R(x),x是产品售出的数量(产量),代入解析式即可;
(2)由利润函数是二次函数,可以利用二次函数的性质求出函数取最大值时对应的自变量x的值.

解答 解:(1)依题意,得:
利润函数G(x)=F(x)-R(x)=(5x-$\frac{1}{2}$x2)-(0.5+0.25x)=-$\frac{1}{2}$x2+4.75x-0.5  (其中0≤x≤5);
(2)利润函数G(x)=-$\frac{1}{2}$x2+4.75x-0.5(其中0≤x≤5),
当x=4.75时,G(x)有最大值;
所以,当年产量为475台时,工厂所得利润最大.

点评 本题在正确理解利润函数的基础上,运用二次函数的性质,解决实际应用问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)+g(x)=2x,则有(  )
A.f(3)<g(0)<f(4)B.g(0)<f(4)<f(3)C.g(0)<f(3)<f(4)D.f(3)<f(4)<g(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线C以原点O为中心,以坐标轴为对称轴,过(3,$2\sqrt{6}$)和(-2,-3)两点.
(1)求双曲线C的标准方程.
(2)斜率为1的直线l过双曲线C的右焦点,并且与双曲线交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{1}{x-a}$-$\frac{λ}{x-2}$,其中a,λ∈R.
(I)当a=4,λ=1时,判断函数f(x)在(3,4)上的单调性,并说明理由;
(II)记A1={(x,y)|x>0,y>0},A2={(x,y)|x<0,y>0},A3={(x,y)|x<0,y<0},A4={(x,y)|x>0,y<0}.M={(x,y)|y=f(x)},若对任意的λ∈(1,3)恒有M∩Ai≠∅(i=1,2,3,4)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}满足a1=2,an+1=$\frac{{2}^{n+1}{a}_{n}}{(n+\frac{1}{2}){a}_{n}+{2}^{n}}$(n∈N+).
(1)设bn=$\frac{{2}^{n}}{{a}_{n}}$,求数列{bn}的通项公式bn
(2)设cn=$\frac{1}{n(n+1){a}_{n+1}}$,数列{cn}的前n项和为Sn,求出Sn并由此证明:$\frac{5}{16}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的前n项和Sn满足S3=0,Sn=5,数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016项的和为-$\frac{2016}{4031}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学生在假期进行某种小商品的推销,他利用所学知识进行了市场调查,发现这种商品当天的市场价格与他的进货量(件)加上20成反比.已知这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元.若每天的商品都能卖完,求这个学生一天的最大利润是多少?获得最大利润时每天的进货量是多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程x2+y2-2x+m=0表示一个圆,则x的范围是(  )
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某工厂2015年生产某产品2万件,计划从2016年开始每年比上一年增产20%,从哪一年开始这家工厂生产这种产品的年产量超过6万件(已知lg2=0.3010,lg3=0.4771)(  )
A.2019年B.2020年C.2021年D.2022年

查看答案和解析>>

同步练习册答案