精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an}的前n项和Sn满足S3=0,Sn=5,数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016项的和为-$\frac{2016}{4031}$.

分析 根据等差数列的前n项和公式解方程组即可求{an}的通项公式;求出求数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的通项公式,利用裂项法即可求前n项和Sn

解答 解:由等差数列的性质可得 $\left\{\begin{array}{l}{3{a}_{1}+3d=0}\\{5{a}_{1}+\frac{5×4}{2}d=5}\end{array}\right.$,
即 $\left\{\begin{array}{l}{{a}_{1}+d=0}\\{{a}_{1}+2d=1}\end{array}\right.$,解得a1=-1,d=1,
则{an}的通项公式an=-1+(n-1)=n-2;
所以 $\frac{1}{{a}_{2n-1}{a}_{2n+1}}$=$\frac{1}{(2n-1)(2n-3)}$=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
则数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前n项和Sn=$\frac{1}{2}$(-1-1+1-$\frac{1}{3}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$)=$\frac{1}{2}$(-1-$\frac{1}{2n-1}$)=$\frac{n}{1-2n}$.
所以数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016项的和为:$\frac{2016}{1-2016×2}$=-$\frac{2016}{4031}$.
故答案是:-$\frac{2016}{4031}$.

点评 本题主要考查等差数列的通项公式的求解,以及利用裂项法进行求和,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x2-2x,则当x∈(-∞,0)时,f(x)=-x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列各式计算正确的个数是(  )
①(-7)•6$\overrightarrow a$=-42$\overrightarrow a$;②$\overrightarrow a$-2$\overrightarrow b$+2(${\overrightarrow a$+$\overrightarrow b}$)=3$\overrightarrow a$;③$\overrightarrow a$+$\overrightarrow b$-($\overrightarrow a$+$\overrightarrow b}$)=$\overrightarrow 0$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=n2
(1)求该数列{an}的通项公式;
(2)已知数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:R(x)=5x-$\frac{1}{2}$x2(0≤x≤5),其中x是产品生产的数量(单位:百台).
(1)将利润表示为产量的函数;
(2)年产量是多少时,企业所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,有下列说法:
①若f(a)•f(b)>0,则函数y=f(x)在区间(a,b)上没有零点;
②若f(a)•f(b)>0,则函数y=f(x)在区间(a,b)上可能有零点;
③若f(a)•f(b)<0,则函数y=f(x)在区间(a,b)上没有零点;
④若f(a)•f(b)<0,则函数y=f(x)在区间(a,b)上至少有一个零点;
其中正确说法的序号是②④(把所有正确说法的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在2×4的方格纸中,若$\overrightarrow{a}$和$\overrightarrow{b}$是起点和终点均在格点的向量,则向量2$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$的夹角余弦值是$-\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.点(3,1)关于直线y=x对称的点的坐标是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域为[7,15),设f(2x+1)的定义域为A,B={x|x<a或x>a+1},若A∪B=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案