精英家教网 > 高中数学 > 题目详情
7.如图,在2×4的方格纸中,若$\overrightarrow{a}$和$\overrightarrow{b}$是起点和终点均在格点的向量,则向量2$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$的夹角余弦值是$-\frac{{\sqrt{10}}}{10}$.

分析 建立直角坐标系,求得向量$\overrightarrow{a}$和$\overrightarrow{b}$的坐标,向量2$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$的坐标,以及数量积和模,再由夹角公式计算即可得到所求值.

解答 解:建立坐标系,如图:
可得$\overrightarrow{a}$=(2,1)-(0,2)=(2,-1),$\overrightarrow{b}$=(4,2)-(1,0)=(3,2),
则2$\overrightarrow a$+$\overrightarrow b$=(4,-2)+(3,2)=(7,0),
$\overrightarrow a$-$\overrightarrow b$=(2,-1)-(3,2)=(-1,-3),
(2$\overrightarrow a$+$\overrightarrow b$)•($\overrightarrow a$-$\overrightarrow b$)=7×(-1)+0×(-3)=-7,
|2$\overrightarrow a$+$\overrightarrow b$|=7,|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{1+9}$=$\sqrt{10}$,
可得向量2$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$的夹角余弦值cos<2$\overrightarrow a$+$\overrightarrow b$,$\overrightarrow a$-$\overrightarrow b$>=$\frac{(2\overrightarrow{a}+\overrightarrow{b})•(\overrightarrow{a}-\overrightarrow{b})}{|2\overrightarrow{a}+\overrightarrow{b}|•|\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{-7}{7\sqrt{10}}$=-$\frac{\sqrt{10}}{10}$.
故答案为:$-\frac{{\sqrt{10}}}{10}$.

点评 本题主要考查平面向量的数量积的运算,注意运用坐标法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若关于x的不等式x+$\frac{4}{x}$≥a2-3a对任意实数x>0恒成立,则实数a的取值范围为(  )
A.[-1,4]B.(-∞,-2]∪[5,+∞)C.(-∞,-1]∪[4,+∞)D.[-2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{1}{x-a}$-$\frac{λ}{x-2}$,其中a,λ∈R.
(I)当a=4,λ=1时,判断函数f(x)在(3,4)上的单调性,并说明理由;
(II)记A1={(x,y)|x>0,y>0},A2={(x,y)|x<0,y>0},A3={(x,y)|x<0,y<0},A4={(x,y)|x>0,y<0}.M={(x,y)|y=f(x)},若对任意的λ∈(1,3)恒有M∩Ai≠∅(i=1,2,3,4)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的前n项和Sn满足S3=0,Sn=5,数列{$\frac{1}{{a}_{2n-1}{a}_{2n+1}}$}的前2016项的和为-$\frac{2016}{4031}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学生在假期进行某种小商品的推销,他利用所学知识进行了市场调查,发现这种商品当天的市场价格与他的进货量(件)加上20成反比.已知这种商品每件进价为2元.他进100件这种商品时,当天卖完,利润为100元.若每天的商品都能卖完,求这个学生一天的最大利润是多少?获得最大利润时每天的进货量是多少件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,∠ABC=$\frac{2π}{3}$.管理部门欲在该地从M到D修建小路:在$\widehat{MN}$上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.
(1)若∠PBC=$\frac{π}{3}$,求PQ的长度;
(2)当点P选择在何处时,才能使得修建的小路$\widehat{MP}$与PQ及QD的总长最小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程x2+y2-2x+m=0表示一个圆,则x的范围是(  )
A.m<1B.m<2C.m≤$\frac{1}{2}$D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=x2+3ax+4,b-3≤x≤2b是偶函数,则a-b的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$,证明:f(x)是R上的增函数;
(2)解方程:log5(3-2•5x)=2x.

查看答案和解析>>

同步练习册答案